Technical Report on the King Tut Gold Project Yukon, Canada

Prepared For:

Onyx Gold Corp.

405-375 Water Street Vancouver, BC Canada, V6B 5C6

Mayo Mining District

1050/03

Latitude 63°12′ N; Longitude 131°12′ W

Report Date: August 1, 2023

Effective Date: July 15, 2023

Prepared by: H. Burrell, B.Sc., P.Geo.
Archer, Cathro & Associates (1981) Limited
EGBC Permit to Practice 1003752

Signature Page

Effective Date: July 15, 2023 Prepared for:	
Onyx Gold Corp. 405-375 Water Street Vancouver, BC Canada, V6B 5C6	
August 1, 2023	
Heather Burrell, B.Sc., P.Geo.	

King Tut Property NI 43-101 Technical Report

Signature Page

King Tut Property NI 43-101 Technical Report

Effective Date: July 15, 2023

Prepared for:

Onyx Gold Corp.

405-375 Water Street Vancouver, BC Canada, V6B 5C6

August 1, 2023

Heather Burrell, B.Sc., P.Geo.

Heatler Burrell.

Report Date: August 1, 2023

Page 2 of 75

Ċ

Table of Contents

Si	gnatur	nature Page 2				
Ta	able of	Contents	3			
Li	st of Fi	gures	6			
Li	st of Ta	ables	7			
Li	st of Pl	hotos	7			
1	Sun	nmary	8			
	1.1	Introduction and Terms of Reference	8			
	1.2	Property Description and Ownership	8			
	1.3	Access and Infrastructure	8			
	1.4	Geological Setting and Mineralization	9			
	1.4.1	Regional Geology	9			
	1.4.2	Property Geology	9			
	1.4.3	Mineralization	10			
	1.5	Exploration History and Significant Results	10			
	1.6	Data Validation	11			
	1.7	Mineral Processing and Metallurgical Testing, and Mineral Resource Estimate	11			
	1.8	Interpretations and Conclusions	11			
	1.9	Recommendations	12			
2	Intr	oduction	. 12			
	2.1	Terms of Reference	12			
	2.2	Qualified Persons	12			
	2.3	Sources of Information	13			
	2.4	Terms, Definitions and Units	13			
3	Reli	ance on Other Experts	. 15			
4	Pro	perty Description and Location	. 16			
	4.1	Location	16			
	4.2	Land Use	16			
	4.2.	3 First Nations	16			
	4.2.	2 Other Land Use	16			
	4.2.	3 Other Significant Factors	16			
	4.3	Mineral Tenure	16			

	4.4	Royalties and Underlying Agreements	18
	4.5	Permits and Authorizations	20
	4.6	Environmental Considerations	20
	4.7	Potential Risk Factors	20
5	Acc	essibility, Climate, Local Resources, Infrastructure and Physiography	20
	5.1	Access	20
	5.2	Local Resources and Infrastructure	21
	5.3	Physiography and Climate	21
6	Hist	ory	21
	6.1	Prior Ownership and Mineral Exploration	21
	6.1.	1 MINFILE 1050-056 (Gold)	22
	6.1.	2 MINFILE 105O-023 (Niddery) and 105O-005 (Drizzle)	23
7	Geo	ological Setting and Mineralization	24
	7.1	Regional Geology	24
	7.2	Property Geology	30
	7.2.	1 Regional Geophysics	34
	7.3	Mineralization	34
8	Dep	osit Types	34
	8.1	Reduced Intrusion-Related Gold Systems	36
	8.2	Sedimentary Exhalative Deposits	37
	8.2.	1 Nick-Type	37
9	Exp	loration	38
	9.1	Introduction	38
	9.2	Surface Sampling	39
	9.1.	1 Silt Geochemistry	39
	9.1.	2 Soil Sampling	47
	9.1.	3 Rock Sampling	49
	9.3	Geophysics	51
	9.4	Results and Interpretation of Geophysical Data	51
1() Sam	nple Preparation, Analyses and Security	53
	10.1	Introduction	53
	10.2	Stream Sediment and Soil Sample Analysis	53
	10.3	Rock Sample Analysis	54

11	Data	ta Verification54				
1	1.1	Introduction	54			
1	1.2	Database Validation	55			
1	1.3	Quality Control	55			
1	1.4	Site Inspection	55			
12	Min	neral Processing and Metallurgical Testing	57			
13	Min	neral Resource Estimates	58			
23	Adja	acent Properties	59			
2	23.1	Plata Project - Honey Badger Siler Inc	59			
2	23.2	MacMillan Pass Project – Fireweed Metals Corp	59			
2	23.3	Rogue Project – Snowline Gold Corp.	59			
24	Oth	er Relevant Data and Information	61			
25	5 Interpretation and Conclusions 6					
2	25.1	Main Tut Target	61			
2	25.2	Golden Mask Target	62			
2	25.3	SEDEX Potential	62			
2	25.4	Presence of Major Structures	62			
2	25.5	Risks and Opportunities	63			
26	Rec	ommendations	65			
2	26.1	Proposed Phase 1 Work Plan and Budget	65			
2	26.2	Proposed Phase 2 Work Plan and Budget	65			
27	Refe	erences	68			
28	Cert	Certificate of Qualified Person72				
Ap	Appendix I: Detailed Claim Listing					

List of Figures

Figure 1: Property Location	17
Figure 2: Claim Locations	19
Figure 3: Tectonic Setting	25
Figure 4: Tintina Gold Belt	27
Figure 5: Property Geology	30
Figure 6: Residual Total Field Magnetics	34
Figure 7: Gold Soil Geochemistry	38
Figure 8: Arsenic Soil Geochemistry	39
Figure 9: Antimony Soil Geochemistry	40
Figure 10: Silver Soil Geochemistry	41
Figure 11: Copper Soil Geochemistry	42
Figure 12: Zinc Soil Geochemistry	43
Figure 13: Lead Soil Geochemistry	44
Figure 14: Gold Rock Geochemistry	50
Figure 15: Adjacent Properties	60

List of Tables

Table 2.4-1: List of Abbreviations and Symbols	13
Table 4.3-1 - Claim Summary for the Property	18
Table 4.4-1 – Purchase Agreement Summary	20
Table 6.1.1-1 – Gold Occurrence (MINFILE 105O-056) Exploration History	22
Table 6.1.2-1 – Exploration History of the Jet Prospect (Harlow and Harlot claims)	23
Table 7.1-1 – Regional Geology Units	28
Table 9.1.1-1 – Soil Geochemical Thresholds	37
Table 11.1-1 – Constantine-Carlin Gold JV's 2011 soil and silt analytical technique – AcmeLabs	53
Table 11.1-2 – Strategic Metals' 2012 soil sampling preparation and analytical technique – ALS	54
Table 11.2-1 - 2011 Rock sampling preparation and analytical techniques – AcmeLabs	54
Table 26.1-1 – Proposed Phase 1 Exploration Budget	66
Table 26.2-1 – Proposed Phase 2 Exploration Budget	67
List of Photos	
Photo 7.2-1 – Chert pebble conglomerate, Earn Group, Golden Mask area	31
Photo 7.2-2 – Altered biotite-quartz monzonite/granite, Mayo suite, Golden Mask area	32
Photo 9.1.2.1-1 – Main Tut valley	48
Photo 9.1.2.2-1 – Golden Mask anomaly area in foreground	49
Photo 12.4-1 – Site visit on June 15, 2023 at the Golden Mask. Helicopter is parked near the constant between quartz pebble conglomerate, Earn Group, and biotite-quartz monzonite/granite, Mayorstock	suite

1 Summary

1.1 Introduction and Terms of Reference

Archer, Cathro & Associates (1981) Limited ("Archer Cathro") have been retained by Onyx Gold Corp. ("Onyx" or the "Company") to produce a Technical Report in compliance with disclosure and reporting requirements set forth in the Canadian Securities Administrators' National Instrument 43-101, "Standards of Disclosure for Mineral Project" (collectively, "NI 43-101"), for the King Tut Gold Project ("King Tut" or the "Project" or the "Property"), located in the Yukon Territory, Canada. This Technical Report represents the first Technical Report for the Project, following the guidelines and standards of NI 43-101.

As part of a recent spin-out transaction by way of a court-approved plan of arrangement (the "Arrangement Agreement") under the British Columbia *Business Corporations Act*, HighGold Mining Inc. ("HighGold") transferred its rights in the Project to Onyx on June 6, 2023 via the transfer of a whollyowned subsidiary called Epica Gold Corp. ("Epica"). After affecting the spin-out, Onyx owns 100% of the issued and outstanding shares of Epica.

1.2 Property Description and Ownership

The Property is located in the Traditional Territory of the Ross River Dene Council, in east-central Yukon Territory. The Property comprises 591 quartz claims covering a total area of 11,967 hectares (ha) or 119.7 km².

The Tut claims were staked in 2010 and 2011 under a 50/50 Joint Venture (JV) between Constantine Metal Resources Ltd. ("Constantine") and Carlin Gold Corp ("Carlin Gold"). In August 2019, Constantine's 50% ownership transferred to Epica, a wholly owned subsidiary of HighGold. In 2022, HighGold purchased the remaining 50% share from Carlin Gold for C\$75,000 cash, 200,000 common shares and a 0.5% net smelter returns (NSR) royalty, which may be bought back for \$750,000 at any time prior to a construction decision. In 2022, HighGold purchased the Harlot and Harlow claims from Strategic Metals Ltd. for \$20,000 cash, 20,000 common shares and a 2.5% NSR (Harlow), which 0.5% may be bought back for \$750,000 at any time prior to the production decision date.

1.3 Access and Infrastructure

The Property is located approximately 150 km north-northeast of Ross River, Yukon (population 335 – Statistics Canada Census, 2021). The North Canol Road (Yukon Highway 6), which connects Ross River to Macmillan Pass, lies 35 km east of the Property. Access to the area is via truck along the North Canol Road, or by airplane from Ross River or Whitehorse to the Macmillan Pass airstrip, and then 25 km by truck back to the Project's staging or laydown area, and then by helicopter to all parts of the Property.

Onyx has a Class 1 Notification Land Use Approval to conduct work on all 591 claims that comprise the Property. Q2023 0043 was issued to Onyx and is valid until June 9, 2024.

No existing environmental liabilities are known on the Property and no other potential risk factors are known that may affect access, title, or the right or ability to perform work on the Property.

1.4 Geological Setting and Mineralization

1.4.1 Regional Geology

The Property is located within the Selwyn Basin, a geographic and stratigraphic entity covering much of central and eastern Yukon. The Selwyn Basin is bounded to the south by the Tintina Fault and to the north by the Mackenzie Platform. The Selwyn Basin stratigraphy is largely comprised of slope-to-basin siliciclastic and carbonate rocks of Late Proterozoic to Paleozoic age (Abbott et al., 1986; Gordey and Anderson, 1993) including the Hyland, Road River and Earn groups. These groups are, in turn, overlain by thick packages of Mississippian quartz-rich siliciclastic rocks of the Keno Hill Quartzite and the Tsichu Formation. Triassic shallow marine clastic sediments of the Jones Lake Formation are found locally overlying the older rocks. Major regional scale thrust faults, the Robert Service, the Tombstone and the Dawson, are found to the north and west of the Property, but deformation associated with the formation of these faults is evident around the Property in the form of unnamed regional scale thrusts and associated folds. Major strike-slip faults are also present and include the Tintina Fault located south of the Property.

The Property lies within the **Tintina Gold Belt**, a ~800 km long metallogenic belt, which follows an arcuate trend of mid-Cretaceous granitoid intrusions extending from eastern Alaska, across central Yukon to the Northwest Territories border (Hart, 2007). In the southeast Yukon, the Tombstone and Mayo suite intrusions were emplaced into folded and faulted stratigraphy of the Selwyn Basin. These intrusions are alkalic to sub-alkalic, moderately reduced and are the drivers for the regionally significant reduced-intrusion-related gold ("**RIRGS**") gold deposits found within the **Tombstone Gold Belt** (Hart, 2007).

1.4.2 Property Geology

The Property is underlain by Phanerozoic sedimentary rocks ranging in age from Cambrian through Triassic (Colpron et al., 2016). The predominant sedimentary unit is the Keno Hill Quartzite, a Mississippian shale with lesser quartzite interbeds (Thomas et al., 2012), that is located north of a prominent west-northwest-trending regional thrust fault ("RTF") (hanging wall on southwest) that bisects the center of the Property. Within the Keno Hill Quartzite is the Mount Christie Formation, a 300 to 500 m wide discontinuous band of Carboniferous to Permian argillite, minor siltstone/quartzite, and shale (Cecile and Abbott, 1989). Further north lies the Jones Lake Formation, a 200 to 500 m wide band (≤ 200 m in stratigraphic thickness) of Triassic thin-bedded calcareous siltstone and sandstone. South and forming the hanging wall to the RTF are Devonian to Mississippian shales, shaley limestone, and conglomerate of the Earn Group, and locally the uppermost Road River Group (separated by a narrow, thin bedded poddy limestone unit-locally bituminous and sulphide bearing. A second thrust fault, located two to three kilometres southwest and above the RTF, parallels and bisects the southwestern part of the Property.

Two Mayo suite Cretaceous-age granitic stocks are mapped on the Property (Cecile and Abbott, 1989). The larger, three kilometre by two kilometre, stock is biotite-hornblende quartz monzonite/granite situated in the approximate centre of the Property. The smaller 500 m x 500 m is a biotite quartz-monzonite/granite is located eight kilometres to the west and is host to the Golden Mask Au-in-soil anomaly. Both intrusive bodies are bordered by rusty, resistant weathering hornfels aureoles extending up to one km into the adjacent fine-grained clastic country rock. Structural data suggests an overall

moderate to steep, south to southwest dip to the hornfelsed sedimentary package with shallow to moderate plunges to the east-southeast.

A set of quartz porphyry aplite dykes form an arcuate zone parallel and 600 to 850 m outboard from the northern contact of the large quartz monzonite stock, and near the outer edge of the hornfels aureole (Thomas et al., 2012). The aplite dykes average 35 to 50 m in width with tightly spaced (1 to 10 cm) high-angle fractures perpendicular to the dyke margins, commonly coated with coarse muscovite, arsenopyrite and quartz. Quartz-arsenopyrite veins are common and occur both parallel and at a shallow angle to the dominant fracture set. This area is host to the Main Tut Au-in-soil anomaly.

A 50 to 60 m thick banded carbonate unit of Caribou Pass Formation, Tsichu Group, was mapped in close proximity to-, and is locally truncated by, the northern edge of the quartz monzonite. It defines a synformal fold closure to the west of the stock (Thomas et al., 2012).

1.4.3 Mineralization

The Property has the potential to host has two deposit types: Reduced Intrusion Related Gold Systems ("RIRGS"); and Sedimentary Exhalative ("SEDEX")/Nick-type Ag-Zn-Ni-Pb. A third deposit type, sedimentary rock-hosted, Carlin-style gold mineralization hosted in prospective Paleozoic lithologies, has also been investigated in the past.

In the area of the Property, Au mineralization associated with quartz-arsenopyrite-pyrrhotite (+/-bismuthinite) stockworks and sheeted veins within the main quartz monzonite stock on the Weas Claim in the centre of the Property has been reported at the Ann Mark Zone with Au values up 15.3 g/t over 3.0 m and 1.01 g/t over 21 m (Leuck 1995) (Minfile 1050-056). The Niddery prospect located just southeast of the Property is categorized as "Intrusive-related gold" (Minfile 1050-023), although most of the historical exploration activity appears to be directed towards Sedimentary Exhalative (SEDEX)/Nick-type mineralization contained at the 'Nick' prospect within a Lower Devonian metalliferous shale horizon anomalous in Zn, Ag and Ni. It is categorized as "Shale-hosted Ni-Zn-Mo-PGE."

On the Property, quartz phenocryst-bearing aplite dykes outboard of the main quartz monzonite stock, near the outer edge of the hornfels aureole, average 35 to 50 m in width and exhibit tightly spaced fractures (one to 10 cm) coated with muscovite, arsenopyrite and quartz. The quartz-arsenopyrite veins are common and occur both parallel and at a shallow angle to the dominant fracture set. The dykes are spatially associated with strongly anomalous gold- and arsenic-in-soil geochemistry and gold rock values in the Main Tut anomaly (Thomas et al., 2012) and the area is considered to be highly prospective for RIRGS-style Au mineralization. The Golden Mask anomaly to the west centered on the western quartz monzonite body has similar RIRGS potential.

1.5 Exploration History and Significant Results

Past exploration on the Property included geological mapping and silt/soil/rock sampling in the 2010-2011 period by the Constantine-Carlin Gold JV as part of their Carlin-style gold campaign. Additional sampling was also carried out on the Harlot and Harlow claims by Strategic Metals Ltd. The Property sample database includes 316 rock samples, 3333 soil samples, 166 silt samples. The work led to the identification of two significant Au- and As-in-soil anomalies coined the Golden Mask and King Tut anomalies.

The Main Tut anomaly is located near the centre of the Property within the contact metamorphic aureole surrounding the northern side of the large quartz monzonite stock. It has an arcuate shape that is over six kilometres in length and 200 to 1500 m in width. It is defined by a broad zone of moderately to strongly anomalous Au-in-soil values to a **peak of 13,389.9 ppb Au**, with coincident strongly anomalous As-in-soil values over 500 ppm, to a peak value above detection limit (>10,000 ppm).

The Golden Mask anomaly is located approximately nine kilometres west of the Main Tut anomaly and it occurs within and adjacent to the apex of the small, 500 by 500 m, quartz monzonite/granite stock. The Golden Mask anomaly is roughly one kilometre by one kilometre in size and hosts coincident strongly anomalous Au and As values. The Golden Mask anomaly is almost entirely comprised of samples that returned > 20 ppb Au, with a majority of samples in excess of 50 ppb Au to a **peak of 1423 ppb Au-in-soil**. As-in-soil values within this anomaly are generally > 100 ppm As, with numerous samples returning > 500 ppm As. The anomaly is open for expansion to the southwest, south and north.

1.6 Data Validation

The Author completed a site visit to the Property on June 15, 2023, traversed the strongly anomalous Au-in-soil anomaly at the Golden Mask area, visited numerous soil sample sites that yielded > 200 ppb Au-in-soil, and surveyed select claim posts.

The Author has reviewed all sample location and analytical information provided by Onyx and all publicly available assessment reports. The Author believes that sample preparation and security, and the analytical procedures used to analyze the samples collected by previous operators are adequate and fit for purpose of this report. In the Author's opinion the data provided in this technical report is adequately reliable.

1.7 Mineral Processing and Metallurgical Testing, and Mineral Resource Estimate

To date, no studies related to mineral processing or metallurgical testing have been conducted, and no mineral resource estimate has been completed.

1.8 Interpretations and Conclusions

The Author has reviewed the exploration data provided by Onyx for the King Tut Project, and this review suggests that the exploration data accumulated is generally reliable and collected using best industry practices.

The King Tut Project is an early exploration stage project with geological and geochemical surveys completed by previous operators in 2010 and 2011. The past work demonstrates the potential for the Property to host both RIRGS- or SEDEX-type orebodies. The Main Tut Au-in-soil anomaly appears to be spatially and genetically associated within two east-west trending mineralized aplite dykes and therefore has RIRGS potential. The anomalous gold-bearing areas so far defined at Golden Mask also appear to be intrusion-related and represent excellent follow-up targets for drilling.

The Property also demonstrates potential for Zn-Pb-Ag-Ni-Mo SEDEX-type mineralization, as evidenced by the previous exploration results in the area reported in the MINFILE database, as well as the fact that the RGS data includes strong values in these elements. The presence of significant fault structures, such as the main thrust that bisects the middle of the Property, highlights the potential for structurally-

controlled mineralization and transport of mineralized fluids to more distal areas away from the magmatic source.

Recent discoveries and project advancements in the Project area by Snowline Gold Corp. ("Snowline") and Fireweed Metals Corp. ("Fireweed Metals") will further highlight the potential of the region and may provide synergies reducing potential infrastructure costs in the future, but these potential synergies are highly speculative at this point in time.

1.9 Recommendations

Based on the encouraging exploration results on the Property to date, the Author believes that ongoing exploration work, including an initial diamond drill program, is warranted to further evaluate the Golden Mask and Main Tut targets. Reconnaissance-level prospecting and geochemical sampling is also encouraged on the remainder of the claims to identify other potential RIRGS and/or SEDEX targets.

A two-phase work plan and budget totaling \$2.25M CDN is recommended with the execution of Phase 2 is contingent on the results from Phase 1.

2 Introduction

2.1 Terms of Reference

Onyx Gold Corp. ("Onyx") retained qualified person Heather Burrell, BSc., P.Geo (the "Qualified Person (QP)" or the "Author") of Archer, Cathro & Associates (1981) Limited ("Archer Cathro") to prepare an independent technical report (the "Technical Report") on the King Tut Gold Project (the "Property") in Yukon, Canada. The purpose of this Technical Report is to summarize the historical exploration work completed on the property by previous operators and to obtain an opinion from an independent QP that the quality and reliability of the data included in this Technical Report are adequate and fit for purpose, thus outlining the property's merits with recommendations for ongoing exploration. This Technical Report represents the first Technical Report for the Project, following the guidelines and standards of NI 43-101.

As part of a recent spin-out transaction by way of a court-approved plan of arrangement (the "Arrangement Agreement") under the British Columbia *Business Corporations Act*, HighGold Mining Inc. ("HighGold") transferred its rights in the Project to Onyx on June 6, 2023 via the transfer of a whollyowned subsidiary called Epica Gold Corp. ("Epica"). After affecting the spin-out, Onyx owns 100% of the issued and outstanding shares of Epica.

2.2 Qualified Persons

This report was prepared by Heather Burrell, B.Sc., P.Geo., Senior Geologist with Archer Cathro. This report was prepared by the Author in accordance with National Instrument 43-101 ("NI 43-101"), Companion Policy 43-101CP, and Form 43-101F1 (collectively the "Instruments"). The QP was retained to examine the Property, summarize all available and significant exploration data on it and, if warranted, prepare recommendations for its further exploration.

Mrs. Burrell is an independent QP under the provisions of the Instruments and has no affiliations with Onyx except that of an independent consultant/client relationship. The QP conducted a property visit on June 15, 2023 on behalf of Onyx.

2.3 Sources of Information

Sources of information are detailed below, and in Section 27, "References", and include public domain information.

- Research of Mineral Titles and claim locations at http://www.yukonminingrecorder.ca,
 http://apps.gov.yk.ca/ymcs and http://apps.gov.yk.ca/ymcs and http://mapservices.gov.yk.ca/YGS/ on July 17, 2023.*
- Review of Class 1 Notification permitting at https://yukon.ca/en/doing-business/licensing/determine-class-your-quartz-mining-exploration-program
- Review of purchase agreements between HighGold- and Constantine, Carlin Gold and Strategic Metals on July 17, 2023.*
- Research of the MINFILE data near the Property at http://data.geology.gov.yk.ca on July 17, 2023.
- Review of geological maps, reports and brochures published by the Yukon Geological Survey (YGS). https://data.geology.gov.yk.ca/Reference69477#InfoTab
- Review of published scientific papers on the geology and mineralization of the region, including mineral deposit types.
- Review of regional weather data for Ross River https://weather.gc.ca/city/pages/yt-8
 8 metric e.html.
- Review of 2021 Canadian Census data for Ross River https://www12.statcan.gc.ca/census-recensement/2021/as-sa/fogs-spg/Page.cfm?Lang=E&Dguid=2021A00056001037&topic=1.
- Review of publicly available data, including news releases of HighGold.
- The site visit on the property by the Author on June 15, 2023.
- The Author has extensive experience and knowledge of the Tombstone Gold Belt area having worked on various projects throughout the belt from 2004 to present.
- The Author conducted single-day exploration programs on the Harlot and Harlow claims in 2012 on behalf of Strategic Metals.

Title documents and purchase agreements were reviewed for this study(*). The title and sale information were relied upon to describe the ownership of the property and claim summaries in Section 4.3 "Mineral Tenure." There is no legal title opinion of the quartz claims that comprise the Property.

2.4 Terms, Definitions and Units

All costs contained in this Technical Report are denominated in Canadian dollars. All list of abbreviations can be found in Table 2.4-1, below.

Table 2.4-1: List of Abbreviations and Symbols

Ag	silver
Au	gold

As	arsenic	
Ва	barium	
Fe	iron	
Cu	copper	
Ni	nickel	
Hg	mercury	
Mn	manganese	
Мо	molybdenum	
Pb	lead	
Sb	antimony	
Zn	zinc	
PGE	platinum group element	
g/t	gram per metric tonne	
g	gram	
ha	hectare	
t	metric tonne	
km	kilometre	
km²	square kilometre	
m metre		
cm centimetre		
mm millimetre		
ppm parts per million		
ppb	parts per billion	
Ma	mega annum, million years ago	
°C	Celsius	
Mt	Metric ton	
N	north	
S	south	
E	east	
W	west	
JV	Joint Venture	
SEDEX	Sedimentary exhalative	
RIRGS	Reduced Intrusion-Related Gold System	
QP Qualified Person		
QA/QC Quality Assurance/Quality Control		
YESAB Yukon Environmental and Socio-Economic Bo		
YG	Yukon Government	
YGS Yukon Geological Survey		
GSC	Geological Survey of Canada	
GPS	Global Positioning System	
RTF	Regional Thrust Fault	

NSR	Net Smelter Returns			
>	Greater than			
<	ess than			
2	Greater than or equal to			
≤	Less than or equal to			

3 Reliance on Other Experts

This section is not relevant to this report since there is no reliance on other experts. References are detailed in Section, "References."

Page Left Intentionally Blank

4 Property Description and Location

4.1 Location

The Property is located in east-central Yukon centered at UTM NAD83 Zone 9 389280E 7009960N on NTS mapsheet 105O/03. The Property is situated 145 km north of the community of Ross River and 40 km west of the Macmillan Pass airstrip on the North Canol Road (Figure 1). An old winter road (the "Plata Winter Road") connects the past-producing small-scale Plata silver mine with the North Canol Road. It is located just off the northeast edge of the Property; however, the Plata Winter Road has not been used in many years and the condition of it has not been observed by the Author.

4.2 Land Use

4.2.3 First Nations

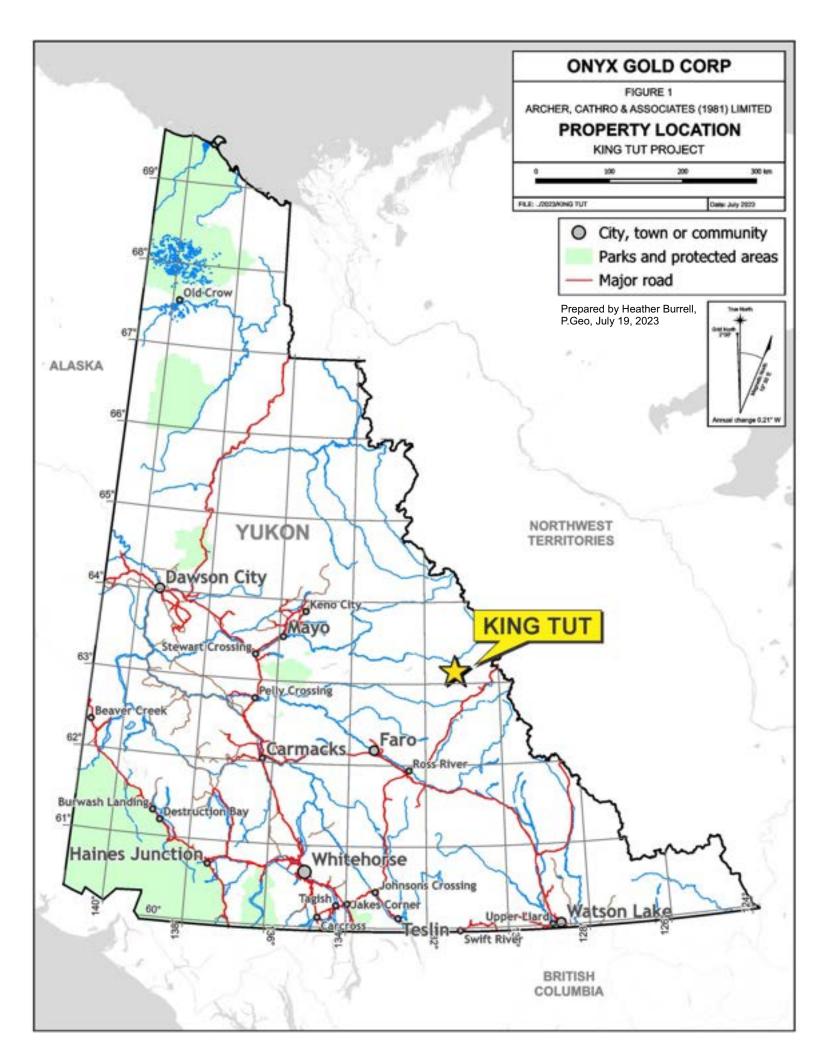
The Property is located within the Traditional Territory of the Ross River Dena Council (RRDC). RRDC is considered an unsettled, or non-treaty, Yukon First Nation.

On December 23, 2013, Order-In-Council 2013/224 (Prohibition of Entry on Certain Lands (Ross River Area) Order, under the Yukon Government's (YG) *Placer Mining Act* and *Quartz Mining Act* was enacted. March 27, 2013, an Order Prohibiting Entry on Certain Lands in Yukon (RRDC), Order-In-Council 2013/060, under YG's *Placer Mining Act* and *Quartz Mining Act* was enacted.

Since 2013, YG has granted annual assessment relief on all Quartz and Placer claims within the RRDC area covered by Order-In-Council 2013/224. Pursuant to subsection 57(1) of the *Quartz Mining Act*, relief with respect to annual representation work for those persons who hold claims within portions of the Ross River Area, has been granted.

The Order-In-Councils mentioned above prevent mineral claim staking and therefore, the Property cannot be expanded, nor can new claims be staked in this area until the Order-In-Councils are lifted.

4.2.2 Other Land Use


The Property lies within Outfitting Concession 9 and Trapping Concessions 405 and 110. No apparent activity, such as cabin infrastructure, was observed by the QP in the immediate vicinity of the Property.

4.2.3 Other Significant Factors

There are no other significant factors or risks that are known that may affect access, title, or the right or ability to perform work on the Property.

4.3 Mineral Tenure

The Property consists of 591 contiguous Tut, Harlot and Harlow Yukon Quartz Mining claims as defined under the Yukon *Quartz Mining Act*. The quartz claims are located in the Mayo Mining District, Yukon, and cover an area of 11,967 hectares (ha) or 119.7 km². Epica is the registered owner. The quartz claims were located by Global Positioning System (GPS) and staked in accordance with the Yukon *Quartz Mining*

Act on NTS Mapsheet 105O/03. Figure 2 illustrates the claim locations, which are derived from the Yukon Government (YG) claim maps (GeoYukon, 2023). Table 4.3-1 shows the claim summary of the Property.

Table 4.3-1 - Claim Summary for the Property

Claim	Numbers	Grant Numbers	Expiry	Registered Owner	Count
Harlot	1-32	YC57040-YC57071	2028-03-06	Epica Gold Inc - 100%	32
Harlow	1-20	YC57072-YC57091	2028-03-06	Epica Gold Inc - 100%	20
TUT	1-139	YD00311-YD00449	2026-10-26	Epica Gold Inc - 100%	139
TUT	140-291	YE35810-YE35961	2025-04-04	Epica Gold Inc - 100%	152
TUT	312-351	YE35982-YE36021	2025-04-04	Epica Gold Inc - 100%	40
TUT	352-373	YE36022-YE36043	2027-04-04	Epica Gold Inc - 100%	22
TUT	374-389	YE36044-YE36059	2025-04-04	Epica Gold Inc - 100%	16
TUT	390-401	YE36060-YE36071	2027-04-04	Epica Gold Inc - 100%	12
TUT	402-417	YE36072-YE36087	2025-04-04	Epica Gold Inc - 100%	16
TUT	418-426	YE36088-YE36096	2027-04-04	Epica Gold Inc - 100%	9
TUT	427-442	YE36097-YE36112	2025-04-04	Epica Gold Inc - 100%	16
TUT	443-449	YE36113-YE36119	2027-04-04	Epica Gold Inc - 100%	7
TUT	450-460	YE36120-YE36130	2025-04-04	Epica Gold Inc - 100%	11
TUT	461-465	YE36131-YE36135	2027-04-04	Epica Gold Inc - 100%	5
TUT	466-472	YE36136-YE36142	2025-04-04	Epica Gold Inc - 100%	7
TUT	473-475	YE36143-YE36145	2027-04-04	Epica Gold Inc - 100%	3
TUT	476	YE36146	2025-04-04	Epica Gold Inc - 100%	1
TUT	477	YE36147	2027-04-04	Epica Gold Inc - 100%	1
TUT	478-480	YE36148-YE36150	2025-04-04	Epica Gold Inc - 100%	3
TUT	481	YE36151	2027-04-04	Epica Gold Inc - 100%	1
TUT	482	YE36152	2025-04-04	Epica Gold Inc - 100%	1
TUT	483-485	YE36153-YE36155	2027-04-04	Epica Gold Inc - 100%	3
TUT	486	YE36156	2025-04-04	Epica Gold Inc - 100%	1
TUT	487-548	YE36157-YE36218	2027-04-04	Epica Gold Inc - 100%	62
TUT	549-559	YE34472-YE34482	2025-09-02	Epica Gold Inc - 100%	11

A group of 30 quartz claims, named Weas, is wholly surrounded by the Property. The Weas claims are owned by Senoa Gold Corp, which is a wholly owned subsidiary of Snowline.

4.4 Royalties and Underlying Agreements

The Tut, Harlot and Harlow claims are owned 100% by Epica, a wholly owned subsidiary of Onyx. Table 4.4-1 below outlines the purchase agreement summary for the claims that comprise the Property. There are no other agreements associated with King Tut.

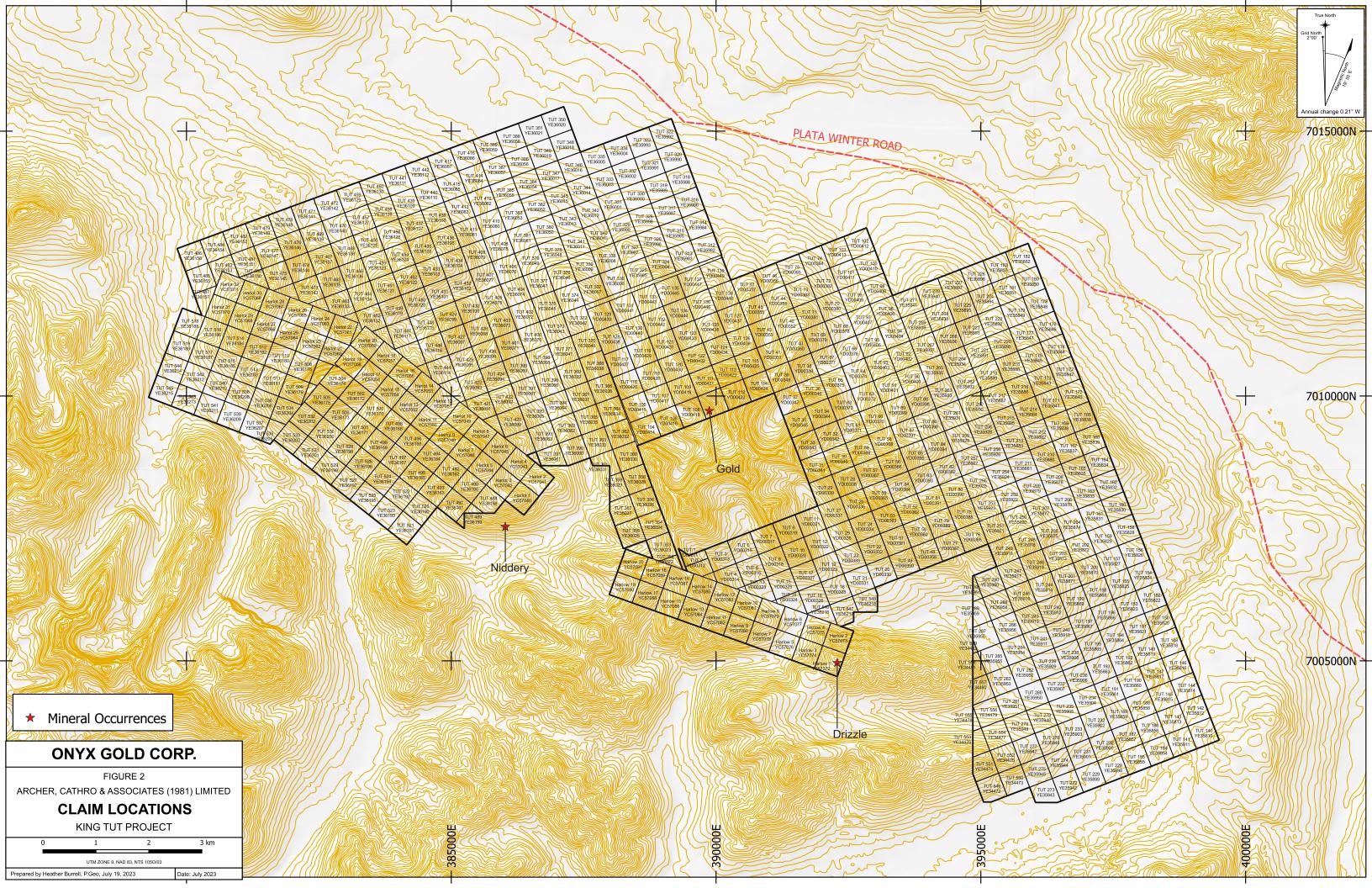


Table 4.4-1 – Purchase Agreement Summary

Year	Vendor	Cash	Shares	NSR	NSR Buy-Back	Buy-Back Condition
2022	Carlin Gold Corp.	\$75,000	200,000	0.5%	\$750,000	Prior to a construction
						decision
2022	Strategic Metals Ltd.	\$20,000	20,000	2.5%	\$750,000	Prior to a construction
						decision

In 2022, HighGold purchased the remaining 50% share from Carlin Gold for C\$75,000 cash, 200,000 common shares and a 0.5% net smelter returns (NSR) royalty, which may be bought back for \$750,000 at any time prior to a construction decision. In 2022, HighGold purchased the Harlot and Harlow claims from Strategic Metals for \$20,000 cash, 20,000 common shares and a 2.5% NSR (Harlow), which 0.5% may be bough back for \$750,000. Onyx has now assumed all of HighGold's rights with respect to the NSR royalties as a result of the Arrangement Agreement.

4.5 Permits and Authorizations

Onyx has a Class 1 Notification¹ Land Use Approval to conduct work on all 591 claims that comprise the Property. Q2023_0043 was issued to Onyx and is valid until June 9, 2024.

Depending on the work thresholds, future work on the Property could be carried out under a different Class 1 Approval, or under a Class 3 Land Use Approval, which requires an assessment by the Yukon Socio-Economic Assessment Board (YESAB).

¹A description of Class 1 activity thresholds can be found on YG's website at: https://yukon.ca/en/doing-business/licensing/determine-class-your-quartz-mining-exploration-program.

4.6 Environmental Considerations

No existing environmental liabilities are known on the Property.

4.7 Potential Risk Factors

No other potential risk factors are known that may affect access, title, or the right or ability to perform work on the Property.

5 Accessibility, Climate, Local Resources, Infrastructure and Physiography

5.1 Access

The Property is accessible via helicopter. Access to the area is gained via a combination of road and air transportation. The closest road access is the North Canol Road (Yukon Highway 6), which extends from the community of Ross River to the Northwest Territories side of Macmillan Pass. A four-wheel drive vehicle is required to drive the North Canol Road. A staging or laydown area for the Project is approximately 195 km via road from Ross River. Due to very rough road conditions, it takes about seven hours to travel from Ross River to the staging area in a four-wheel drive truck.

Airplane access to the area can be gained at Macmillan Pass, 40 km east of the Property and 25 km by road from the Project's staging or laydown area. The Macmillan Pass airstrip has a 457 m by 15 m runway and receives no maintenance from Government (NAV Canada, 2020). The Plata Winter Road, which extends from the North Canol Road to the historical producing small-scale Plata silver mine, comes within 300 m of the Property's northern boundary. The Plata Winter Road route was cleared in the 1970s to allow heavy equipment to walk to the mine. The winter road has not been used in decades and has subsequently overgrown with vegetation in certain areas, but with proper permitting it could be reactivated to support modern exploration activities. The Author has not inspected or verified the condition of the winter road route.

5.2 Local Resources and Infrastructure

Whitehorse, Yukon's capital, is the closest major supply centre to the Property. It lies 406 km, by road, from Ross River and can be accessed via the Alaska, Klondike and Robert Campbell highways. Ross River is an unincorporated community of 355 people (Statistics Canada Census, 2021). The community has a general store, YG Health Centre and fuel services available.

5.3 Physiography and Climate

The Property is located within the Selwyn Range, in the Hess Mountains. The Property drains into the Hess River toward the north and the North Macmillan River toward the south. Both the Hess and North Macmillan rivers are part of the Yukon River watershed. The Property is located within rugged terrain with elevations ranging from 1000 to 2200 m. Although much of the property is very rugged, a series of cirques leading to broad glacial carved valleys resulted in large areas of more moderate, easily explorable terrain. High elevations are characterized by rubble crop, talus and abundant outcrop along the ridges. Lower elevations are covered by cordilleran boreal spruce and fir forest, with abundant alder growth. This vegetation grades into stunted conifers and buckbrush towards the tree line. Alpine tundra vegetation covers higher elevations. There are no known "Species of Concern," as defined by the Yukon Conservation Data Centre (www.yukon.ca/en/species-data), on the Property.

The prime operating season in this part of the Yukon runs from mid to late May to late September. During this period daily temperatures can range from -5°C to 25°C. Precipitation is generally light during the operating season (https://climate.weather.gc.ca/climate_data/almanac_e.html?StationID=8964). Daylight hours reduce working time after late September.

6 History

6.1 Prior Ownership and Mineral Exploration

According to YG's "GeoYukon" data viewer (www.geoyukon.ca), the Property covers ground that includes two MINFILE occurrences, 1050-056 (Gold) and 1050-023 (Drizzle), while a third MINFILE, 1050-005 (Niddery) plots immediately off the property near the Harlot claims (Figure 2). On GeoYukon, the MINFILE location for Gold occurrence is on the Tut 110 claim, although publicly available assessment reports document that most of the work took place on the Weas claims owned by Senoa Gold Corp., a wholly owned subsidiary of Snowline. The Drizzle occurrence is located about five kilometres southeast of the Gold occurrence. The accuracy of MINFILE locations is low (listed by YG as five-kilometre accuracy) and

therefore, field evaluations would be required to accurately re-locate the Drizzle and Niddery MINFILE occurrences. Exploration histories for the Gold, Drizzle and Niddery occurrences are outlined below. Drizzle and Niddery will both be discussed in Section 6.1.2 because most of the work conducted on those occurrences was done as part of the "Jet Prospect" a sedimentary exhalative (SEDEX)-Nick-type shale-hosted Ni-Zn-Mo-PGE target. The Niddery occurrence is categorized as "Intrusive-related gold" in the MINFILE report; however, according to the publicly available assessment reports, the exploration activity focused on the SEDEX potential.

6.1.1 MINFILE 1050-056 (Gold)

The exploration history of the Gold occurrence is outlined in Table 6.1.1-1, below.

Table 6.1.1-1 – Gold Occurrence (MINFILE 105O-056) Exploration History

Year	Work Description	Reference
1991	Phelps Dodge Canada Corp staked Cal claims. Noranda tied on the Gold claims	Carne, 1991
1994	B. Lueck's crew re-staked Cal claims as Weas claims. Lueck conducted geological mapping, reconnaissance soil and silt sampling. Weas claims were transferred to APC Ventures Inc. ("APC Ventures").	Lueck, B.A., 1995
1995	APC Ventures conducted additional geological mapping and expanded the soil and silt	Lueck, B.A., 1996
1996	APC Ventures optioned the Weas claims to Yukon Gold Corp. (Yukon Gold), who completed five short diamond drill holes.	Yukon Gold Corp., Press Release, 1996
1997	Cyprus Canada Inc. surrounded Weas claim with Cyp claims. The Cyp claims were subsequently allowed to lapse.	MINFILE 105O-056, GeoYukon 2023
2010	Constantine staked Tut 1-139 claims	Thomas et al., 2012
2011	Constantine staked 400 additional Tut claims and conducted mapping, prospecting, soil sampling	Thomas et al., 2012

6.1.1.1 Pre-2010 Exploration

The highest Au grades reported for historical work on the Gold occurrence were encountered within a sheeted vein/fracture zone contained within a Cretaceous-age Mayo Suite granitic stock. This area is referred to as the "Ann Mark Zone" and it does not lie on the Property. Lueck (1995) reports samples containing up to 15.3 g/t Au over 3 m in "quartz veins in sericite altered diorite." The report does not indicate the orientation of this sample with respect to the trend of the quartz veins. Yukon Gold reportedly drilled five holes in the Ann Mark Zone in 1996, encountering anomalous Au mineralization in quartz-arsenopyrite-pyrrhotite stockworks and sheeted veins. Vein density is unknown. The MINFILE summary for the Gold occurrence reports that this drilling program included a 21 m intersection grading

1.01 g/t Au in sheeted quartz-arsenopyrite-bismuthinite veins located at the intrusive-sediment contact (GeoYukon, 2023).

6.1.1.2 Post-2010 Exploration

In 2010, the Property was staked by Constantine and Carlin Gold after reviewing Geological Survey of Canada (GSC) regional silt sampling data, researching the available geological data, and researching the YG MINFILE database (Thomas *et al.*, 2011). The Tut 1 to 139 claims were staked followed the public announcement by ATAC Resources Ltd. (ATAC) of its discovery of Carlin-style gold mineralization at the Osiris and Conrad zones on the Rackla Gold Property (now owned by Hecla Mining Company), located approximately 115 km north-northwest of the Property (Hecla Mining Company NR, 2023).

6.1.2 MINFILE 1050-023 (Niddery) and 1050-005 (Drizzle)

MINFILE 105O-005 ("Niddery") occurs just southeast of Tut 488 on un-staked ground. The prospect is categorized as "Intrusive-related gold" in the MINFILE report, although most of the historical exploration activity appears to be directed towards SEDEX/Nick-type mineralization contained within a Lower Devonian metalliferous horizon anomalous in Zn, Ag and Ni. It is categorized as "Shale-hosted Ni-Zn-Moplatinum group element (PGE) (Nick-type)."

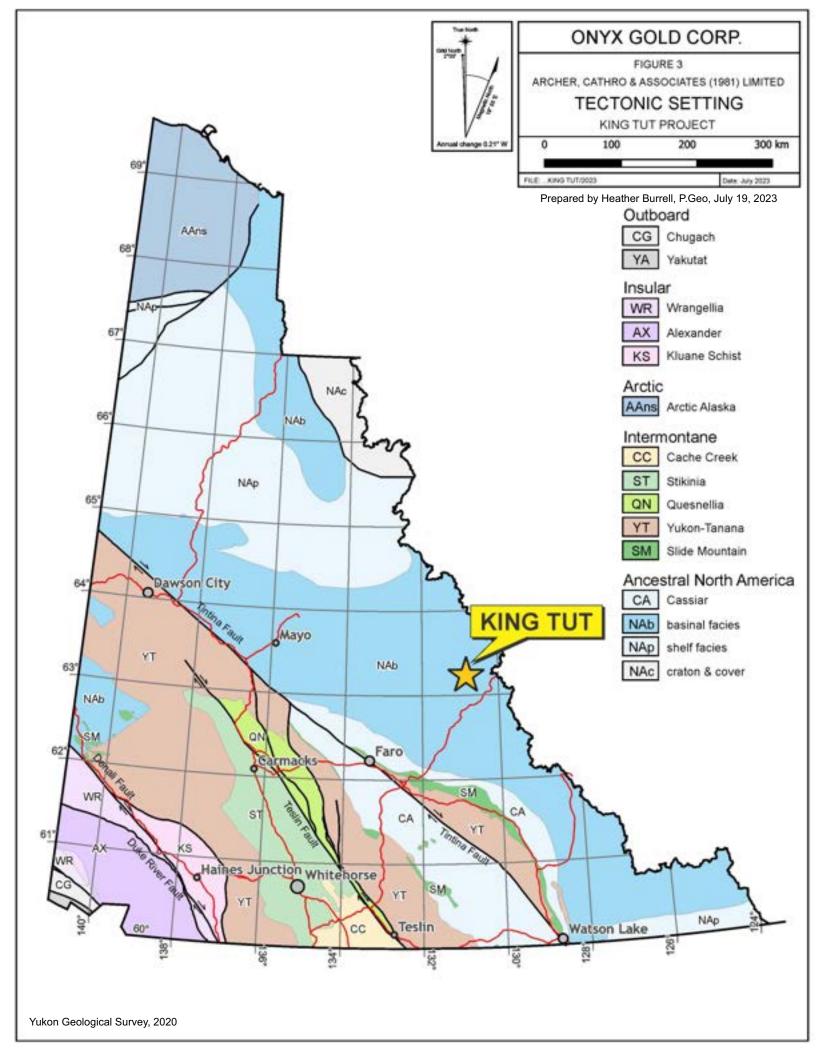
Publicly available RGS data (Friske et al., 1991; McCurdy et al., 2009) documents strongly anomalous Au, As, Hg, and Sb on the Property. Individual samples contain up to 350 ppb Au and 3800 ppm As, which are the fifth (Au) and second (As) highest values within the RGS database for the entire Selwyn Basin (McCurdy et al., 2009). Strongly anomalous RGS data for drainages on or directly adjacent to the Property, includes three samples in the 95th percentile for Au (\geq 17 ppb), six samples in the 95th percentile for As (\geq 75 ppm), four samples in the 95th percentile for Hg (\geq 382 ppb), and nine samples in the 95th percentile for Sb (\geq 8.3 ppm).

Table 6.1.2-1 lists the exploration history for the "Jet Prospect" which includes the Niddery and Drizzle occurrences.

Table 6.1.2-1 – Exploration History of the Jet Prospect (Harlow and Harlot claims)

Year	Work Program	Reference
1967	Data compilation	
1968	Atlas Exploration Ltd. staked the area and conducted regional exploration for Pb-Zn mineralization	Cotes, M.E., 1968
1976	Itsi Joint Venture (Union Oli Ltd., Acquitaine Company of Canada Ltd., and St. Joseph Explorations Ltd.) staked the Rain claims. There is no record of work performed.	Parry and Carne, R.C., 1990
1981	Hudson Bay Exploration and Development Company Ltd. staked the Sun claims and carried out geological mapping and geochemical sampling	Fraser, G., 1982
1982	Hudson Bay Exploration and Development Company Ltd. carried out geological mapping and geochemical sampling. The Sun claims lapsed following this work because elevated Zn and Ag values were attributed to high metal values in the underlying Road River Group shales.	Fraser, G., 1982

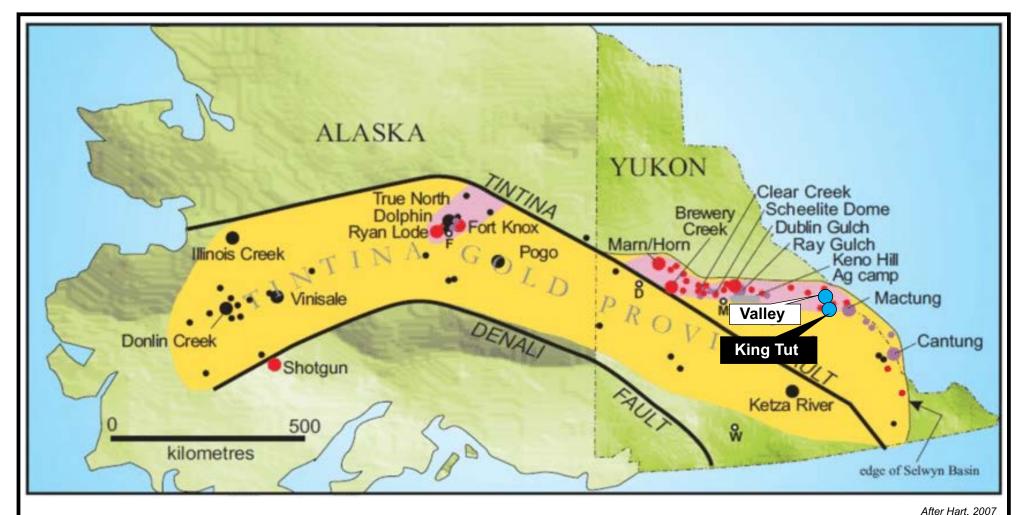
1990	Reconnaissance-scale soil and silt samples collected for the Itsi Joint Venture were re-analyzed by NDU Resources Ltd. (NDU)and returned elevated values for Zn, Ni and other metals indicative of polymetallic massive sulphide mineralization similar to that found at the Nick deposit	Carne, R.C., 1991
1990	NDU Re-staked the Jet Property, which included the area now covered by the Harlot and Harlow claims. Geochemical sampling was conducted.	Carne, R.C., 1991
1991	NDU optioned the Jet Property to Falconbridge Limited, which conducted geochemical sampling and geological mapping. Falconbridge's work identified four areas of encouraging NiMotype geochemical signatures. Peak values from soil sampling were: 3160 ppm Ni, 1010 ppm Cu, 26 ppm Ag, 460 ppm As, 355 ppm Mo, greater than 1% Zn, and >100 ppm Cd. Select soil sample pulps were also analysed for Pt, Pd and Au. The best results were 200 ppb Pt, <30 ppb Pd and 45 ppb Au.	Carne, R.C., 1991
1998	NDU optioned the Jet Property to Expatriate Resources Ltd., (Expatriate) before NDU Resources merged with United Keno Hill Mines Ltd. Expatriate performed hand trenching, geological mapping and geochemical sampling. Five trenches (TR98-01 to TR98-05) were dug, with TR98-02 and TR98-04. The best chip sample returned 5680 ppm Zn and 223 ppm Ni over three metres in TR98-04. The Jet claims were subsequently allowed to expire.	Gish, R. F., 1999
2007	Strategic Metals Ltd. re-staked parts of the Jet Property as the Harlot and Harlow claims. Exploration programs of geological mapping, prospecting and soil sampling were conducted on the Harlot and Harlow claims.	Gregory, 2008
2012	Exploration programs comprised of prospecting and soil sampling were conducted on the Harlot and Harlow claims.	Morton and Burrell, 2013a and Morton and Burrell, 2013b


Geochemical results from the historical (pre-2010) work have not been incorporated into the data package for the Property. Results listed above should be considered a useful reference for this early stage of exploration but must be treated with caution.

7 Geological Setting and Mineralization

7.1 Regional Geology

The Property is located within the Selwyn Basin, a geographic and stratigraphic entity covering much of central and eastern Yukon (Figure 3). The Selwyn Basin is bounded to the south by the Tintina Fault and to the north by the Mackenzie platform. Selwyn Basin stratigraphy is largely comprised of slope-to-basin siliciclastic and carbonate rocks of Late Proterozoic to Paleozoic age (Abbott *et al.*, 1986; Gordey and Anderson, 1993). Late Proterozoic gritty quartz sandstone, carbonate and shale of the Hyland Group are the oldest unit within the Selwyn Basin and are found throughout central Yukon. The Hyland Group is

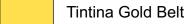

overlain by Cambrian shale of the Gull Lake Formation and limestone, siltstone of the Rabittkettle Formation and Ordovician to Devonian shale, chert and mudstone of the Road River Group (Gordey and Anderson, 1993). These strata are overlain by deep water sediments of the Earn Group, deposited within restricted basins formed in a transtensional rift environment. Regionally, thick packages of Mississippian quartz-rich siliciclastic rocks of the Keno Hill Quartzite and the Tsichu Formation overly the Earn Group (Gordey and Anderson 1993; Murphy, 1997). Triassic shallow marine clastic sediments of the Jones Lake

Formation are found locally overlying the older rocks. Major formational units of the Selwyn Basin in the vicinity of the Property are described in Table 7.1-1.

Subsequent to deposition, major crustal shortening and thickening occurred as the result of terrane accretion and collision-related deformation in the Jurassic through to approximately 100 Ma (Mair *et al*, 2006). Major regional scale thrust faults, the Robert Service, the Tombstone and the Dawson, are found to the north and west of the Property, but deformation associated with the formation of these faults is evident around the Property in the form of unnamed regional scale thrusts and associated folds. This deformational event was followed by a Latest Cretaceous to Tertiary dextral transcurrent regime, which resulted in lateral displacement along strike-slip faults, including the Tintina Fault, south of the Property.

The Property lies within the *Tintina Gold Belt* (Figure 4), a greater than 800 km long metallogenic belt, which follows an arcuate trend of mid-Cretaceous granitoid intrusions extending from eastern Alaska, across central Yukon to the Northwest Territories border (Hart, 2007). The intrusions within the Tintina Gold Belt include the Mayo and Tombstone suites and range in age from 97 to 92 Ma. Intrusions are alkalic to sub-alkalic and moderately reduced and are the drivers for the regionally significant reduced-intrusion-related gold deposits found within the Tombstone Gold Belt (Hart, 2007). In southeast Yukon, the Tombstone and Mayo suite intrusions were emplaced into folded and faulted stratigraphy of the Selwyn Basin.

ONYX GOLD CORP.


FIGURE 4

ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

TINTINA GOLD BELT

KING TUT PROJECT

Prepared by Heather Burrell, P.Geo, July 19, 2023 DATE: July 2023

Pink area represents the Tombstone Gold Belt

CRETACEOUS

Mayo Suite

mKgM: quartz porphyry rhyolite dykes

mKqM: biotite granite; K-feldspar porphyritic granite

TRIASSIC

TrJ1: Jones Lake Fm. calcareous siltstone, shale, and fine sandstone

MISSIPPIPPIAN TO PERMIAN

CPMC: Mount Christie Fm. burrowed, interbedded greenish grey cherty shale and green shale

MISSISSIPPIAN

Tsichu Group

CT1: massive to thick-bedded quartz arenite

CT2: black to silvery shale or carbonaceous phyllite

CT4: Caribou Pass Fm. siliceous calcarenite, dolostone, sandy dolostone and minor grey quartzite

DEVONIAN TO MISSISSIPPIAN

Earn Group

DME: undifferentiated black siliceous shale and chert

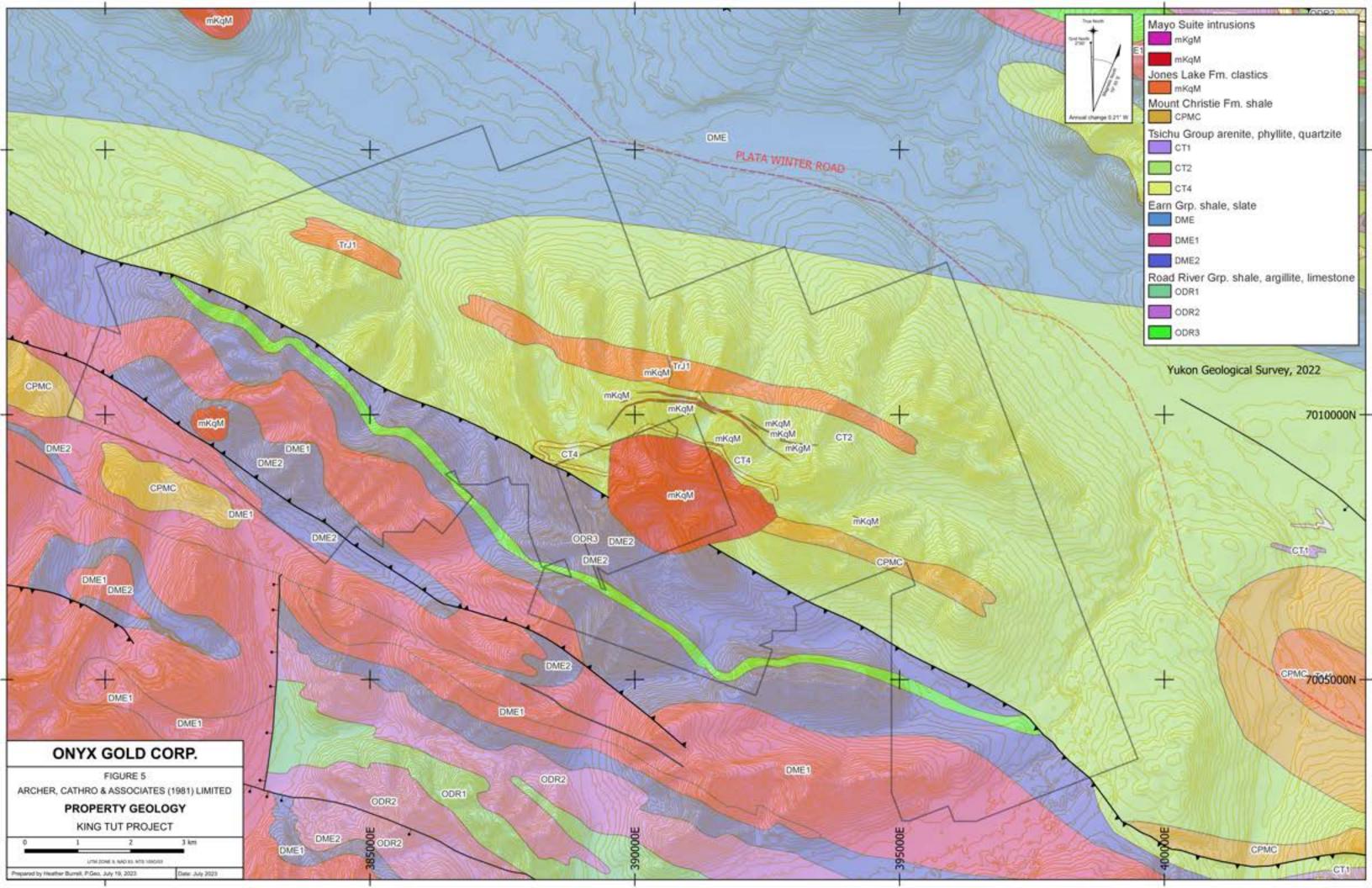
DME1: Portrait Lake/Prevost Fm. laminated slate, fine to medium-grained chert-guartz arenite and wacke

DME2: silvery blue weathering black shale, argillite, cherty argillite and chert

SILURIAN TO ORDOVICIAN

Road River Group

ODR1: Duo Lake/Elmer Creek Fm. black graptolitic shale and black chert


ODR2: Steel Fm. rusty dark green to orange buff weathering argillite and dolomitic siltstone

ODR3: Sapper Fm. blue-grey weathering, black limestone

7.2 Property Geology

According to the compiled regional geology map by Colpron et al., 2016, the area is underlain by Phanerozoic sedimentary rocks ranging in age from Cambrian through Triassic. Regional units are described in Table 7.1-1, and their distribution is illustrated in Figure 5. Bedding orientations reflect closed to tight west-northwest-trending folds and thrust faults, and parallel the dominant regional structural trend. Based on regional geology maps, the predominant sedimentary unit underlying the Property is a Mississippian shale with lesser quartzite interbeds that is assigned to the Keno Hill Quartzite (Thomas et al., 2012). This unit is located north of a prominent west-northwest-trending regional thrust fault (hanging wall on southwest) that bisects the center of the Property. Mapped internal to the Keno Hill Quartzite is a 300 to 500 m wide discontinuous band of Carboniferous to Permian argillite, minor siltstone/quartzite, and shale (Cecile and Abbott, 1989) that is assigned to the Mount Christie Formation. Further north on the Property is a 200 to 500 m wide band (≤ 200 m in stratigraphic thickness) of Triassic thin-bedded calcareous siltstone and sandstone of the Jones Lake Formation. The position of the Triassic age Jones Lake Formation internal to Mississippian Keno Hill Quartzite (and the lack of intervening Carboniferous to Permian Mount Christie Formation) suggests either faulted contacts or potential misidentification of one or more units. Additional detailed mapping is required to resolve these issues (Thomas et al., 2012).

Devonian to Mississippian shales, shaley limestone, and conglomerate are mapped to the south of, and hanging wall to, the prominent thrust fault that bisects the center of the Property (Cecile and Abbott, 1989). These rocks are assigned to Earn Group in the regional compilation map of Colpron et al., 2016; however, mapping and fossil determinations by the GSC and work during exploration of the Jet Prospect by NDU Resources (Carne, 1991) indicates uppermost Road River Group (Lower Devonian) units in stratigraphic contact with the base of the Earn Group (Devonian to Mississippian). Road River Group rocks are primarily black shale and mudstone, with minor chert and carbonates. Earn Group rocks are predominantly black, often carbonaceous shale and chert pebble conglomerate, with minor chert, sandstone and limestone. A narrow, thin bedded poddy limestone unit, that is locally bituminous and sulphide bearing, marks the transition from Road River to Earn Group rocks. The trace of a second thrust fault, located two to three kilometres to the southwest of the above described thrust, parallels and bisects the southwestern part of the Property.

CRETACEOUS Mayo Suite

mKgM: quartz porphyry rhyolite dykes

mKqM: biotite granite; K-feldspar porphyritic granite

TRIASSIC

TrJ1: Jones Lake Fm. calcareous siltstone, shale, and fine sandstone

MISSIPPIPPIAN TO PERMIAN

CPMC: Mount Christie Fm. burrowed, interbedded greenish grey cherty shale and green shale

MISSISSIPPIAN Tsichu Group

CT1: massive to thick-bedded quartz arenite

CT2: black to silvery shale or carbonaceous phyllite

CT4: Caribou Pass Fm. siliceous calcarenite, dolostone, sandy dolostone and minor grey quartzite

DEVONIAN TO MISSISSIPPIAN Earn Group

DME: undifferentiated black siliceous shale and chert

DME1: Portrait Lake/Prevost Fm. laminated slate, fine to medium-grained chert-quartz arenite and wacket

DME2: silvery blue weathering black shale, argillite, cherty argillite and chert

SILURIAN TO ORDOVICIAN

Road River Group

ODR1: Duo Lake/Elmer Creek Fm. black graptolitic shale and black chert ODR2: Steel Fm. rusty dark green to orange buff weathering argillite and dolomitic siltstone

ODR3: Sapper Fm. blue-grey weathering, black limestone

Photo 7.2-1 – Chert pebble conglomerate, Earn Group, Golden Mask area

Two Mayo suite Cretaceous age granitic stocks are mapped on the Property (Figure 5). The larger body measures approximately three kilometres east-west by two kilometres north-south, and is centered on the Weas claims owned by Senoa Gold Corp., a subsidiary of Snowline. The smaller body lies approximately eight kilometres west, is equidimensional and approximately 500 m by 500 m. Cecile and Abbott (1989) indicate that the eastern stock is a biotite-hornblende quartz monzonite/granite and the western body is a biotite quartz monzonite/granite. Both intrusive bodies are bordered by rusty, resistant weathering hornfels aureoles within the adjacent fine-grained clastic country rock. The hornfels zone extends approximately one kilometre outboard of the eastern stock and its rusty expression can be seen on air photos. Later mapping by the GSC identified fossils that lead to the re-assignment of the underlying rocks to a section at the contact between the Road River and Earn groups (GeoYukon, 2023).

Photo 7.2-2 – Altered biotite-quartz monzonite/granite, Mayo suite, Golden Mask area

Property-scale mapping by the Constantine-Carlin Gold JV in 2011 identified a set of previously undocumented quartz porphyry aplite dykes that form an arcuate zone parallel and 600 to 850 m outboard from the northern contact of the large quartz monzonite/granite stock, and near the outer edge of the hornfels aureole. The aplite dykes average 35 to 50 m in width. Fractures within the dykes are tightly spaced (1 to 10 cm) and commonly coated with coarse muscovite, arsenopyrite and quartz. Fracturing is typically at a high angle to dyke contacts and persistent throughout. Quartz-arsenopyrite veins are common and occur both parallel and at a shallow angle to the dominant fracture set (Thomas et al., 2012).

The 2011 mapping also identified a visually distinct 50 to 60 m thick banded carbonate unit that consists of alternating layers of marble and altered carbonate, siltstone and sandstone. The altered unit, mapped as Caribou Pass Formation, Tsichu Group, was mapped in close proximity to-, and is locally truncated by, the northern edge of the quartz monzonite. It defines a synformal fold closure to the west of the stock (Thomas et al., 2012).

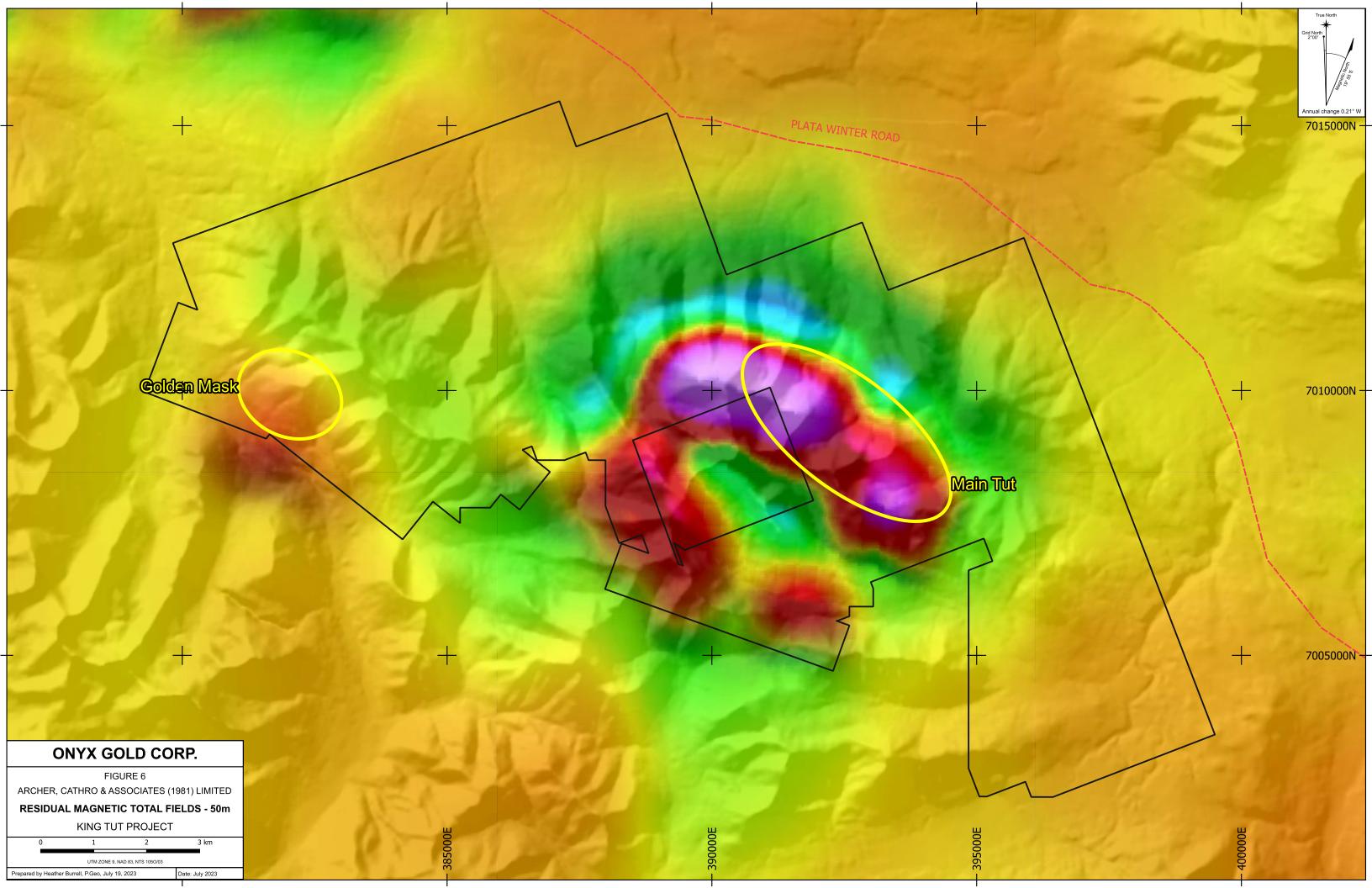
Structural data collected during Constantine-Carlin Gold JV mapping north of the main quartz monzonite stock documents an overall moderate to steep, south to southwest dip to the hornfelsed sedimentary package. Tight folding is extensive within this area, with numerous decimeter-scale folds observed in outcrop. Measured fold axis consistently have shallow to moderate plunges to the east-southeast. Much of this smaller-scale folding is likely parasitic to larger scale fold structures, such as the synform outlined by the banded carbonate unit described above; however, the lack of distinct marker horizons within the rusty hornfels zone inhibits resolution of these potential larger scale features (Thomas et al., 2012).

7.2.1 Regional Geophysics

A compilation of regional residual magnetic total field data was published in 2022, as shown on Figure 6. The larger Mayo suite stock has a magnetic low signature, while the surrounding contact metamorphic aureole is discernible on the regional total field magnetic geophysical map with a highly magnetic response. The combination of low magnetic centre flanked by a high magnetic periphery creates a 'doughnut' feature.

7.3 Mineralization

The Tut claims were staked primarily to target areas for sedimentary rock-hosted, Carlin-style gold mineralization hosted in prospective Paleozoic lithologies. The claims were staked in 2010 and 2011 following the ATAC's announcement of the discovery of Carlin-style mineralization at the Osiris and Conrad zones located in the Selwyn Basin approximately 115 km north-northwest of the Property. The target concept was to explore for Carlin-style mineralization in receptive host rocks and structures distal to the known Au-bearing Mayo suite intrusions.


The Gold occurrence (MINFILE 105O-056) lends support to the area's potential for precious metal mineralization. Au values up to 15.3 g/t over 3.0 m are reported by Lueck (1995) on the adjacent Weas claims in an area designated the Ann Mark Zone within the eastern quartz monzonite stock. Yukon Gold reportedly drilled five holes in the Ann Mark Zone in 1996 and encountered anomalous Au mineralization in quartz-arsenopyrite-pyrrhotite stockworks and sheeted veins. The MINFILE occurrence summary reports that this drilling program included a 21 m interval grading 1.01 g/t Au in sheeted quartz-arsenopyrite-bismuthinite veins located at the intrusive sediment contact. No assessment report or other data related to the drill program on the Gold occurrence have been located or verified by the Author. Geochemical information provided by Leuck (1996) for surface work in the area show that anomalous Au values occur in rock samples (up to 0.798 g/t Au) and soil samples (up to 570 ppb Au) located on the Property.

Quartz phenocryst-bearing aplite dykes outboard of the large monzonite stock, near the outer edge of the hornfels aureole average 35 to 50 m in width and exhibit tightly spaced fractures (one to 10 cm) coated with muscovite, arsenopyrite and quartz. The quartz-arsenopyrite veins are common and occur both parallel and at a shallow angle to the dominant fracture set. The dykes are spatially associated with strongly anomalous Au- and As-in-soil geochemistry and Au rock values (Thomas et al., 2012).

8 Deposit Types

Based on the geology of the Property, it has potential to host has two deposit types: Reduced Intrusion Related Gold Systems (RIRGS); and Sedimentary Exhalative (SEDEX) and sub-type, Nick-type Ag-Zn-Ni-Pb. A third deposit type, Carlin-type Gold, was previously contemplated on the Property, as it meets several diagnostic criteria which are characteristic of Carlin-style deposits in Nevada, including the following:

- 1. ancient continental margin setting;
- 2. prominent regional scale thrust faults;
- 3. favourable carbonate-bearing host rock stratigraphy;

- 4. key pathfinder elements in regional stream sediments;
- 5. presence of regional-scale antiforms that may present structural traps for gold; and,
- 6. proximity to documented occurrences of low-temperature arsenic minerals (realgar and orpiment).

No additional discussion on Carlin-style deposits will be included in this Technical Report because the 2011 exploration work reported an absence of realgar and orpiment mineralization and property-scale mapping documented a thinner stratigraphic sequence of carbonate rocks than is reported on GeoYukon (Thomas et al., 2012).

8.1 Reduced Intrusion-Related Gold Systems

The Property hosts potential for a Reduced Intrusion Related Gold System (RIRGS) mineralization, for which the Tintina Gold Belt is best known (Figure 4). RIRGS deposits are generally characterized by widespread arrays of sheeted auriferous quartz veins that preferentially form in the brittle carapace at the top of small (100 m to five kilometre diametre) plutons, where they form bulk-tonnage, low-grade Au deposits characterized by a Au-Bi-Te-W metal assemblage, such as the Fort Knox and Dublin Gulch deposits (Hart, 2007). As suggested by the name, reduced intrusion-related deposits form around reduced ilmenite (I-type granitoid) series intrusions. Fe occurs primarily in non- to weakly magnetic minerals, and thus the intrusions themselves appear as magnetic lows in geophysical surveys, while the contact metamorphism of the surrounding rock often produces pyrrhotite, which yields a strong positive magnetic response (Hart, 2007). There is a wide range of other intrusion-related mineral deposit styles (skarns, replacements, veins) that form within the region of hydrothermal influence surrounding the causative pluton and are characterized by proximal Au-W-As and distal Ag-Pb-Zn metal associations, thereby generating a zoned mineral system (Hart, 2007).

Grade in RIRGS deposits is mainly controlled by vein density. Vein densities have an average of three to five veins per metre within otherwise barren host rocks, thus yielding approximately 1 g/t ores (Hart, 2007). Plutons that generate RIRGS form in tectonic settings characterized by weak post-collisional extension behind a thickened continental margin. Such settings are also conducive to the formation of W deposits, and thereby generate a regional Au-W metallogenic association, but individual plutons can generate both W and Au deposits. Associated magmas are diverse and have characteristics of I-, S-, and A-type granitoids. The most prolific Au systems comprise metaluminous, moderately reduced, moderately fractionated, biotite>> hornblende>pyroxene quartz monzonites that have mixed with volatile-rich lamprophyric melts (Hart, 2007).

RIRGS mostly form at a depth of five to seven kilometres and generate mineralizing fluids that are low salinity, aqueous carbonic in composition. The RIRGS class was developed on well-studied examples in Yukon and Alaska, most notably Fort Knox, Dublin Gulch and Brewery Creek (Lang and Baker, 2001; Hart, 2007).

Intrusions on and near the Property are part of the Mayo suite, one of the key magmatic suites for hosting RIRGS deposits in Yukon (Hart, 2007; Colpron et al., 2016).

The Property hosts favourable geological and geophysical properties and encouraging mineralization styles consistent with the RIRGS deposit model; however, it is early in the exploration phase. While the

RIRGS model seems to be the most suitable deposit model to guide current Au exploration efforts on the property, care should be taken not to pigeonhole thinking at such an early stage.

8.2 Sedimentary Exhalative Deposits

The nearby Tom and Jason deposits are examples of stratiform, strata-bound sediment-hosted, exhalative ("SEDEX") Zn-Pb-Ag-Ba deposits. Historically the term SEDEX was first used in a report describing the Zn-Pb-Ag deposits of the Selwyn Basin by Carne and Cathro (1982) and since then the term has been adopted globally. SEDEX deposits formed in rift basins primarily in the late Paleoproterozoic and in the early Phanerozoic, with typical grades of 10% combined Pb and Zn in producing mines.

Mineralization is interpreted to have formed at or close to the seawater-sediment interface either proximal or distal to submarine exhalative vents localized along syn-sedimentary (growth) faults. Euxinic conditions may have been present during deposition of sulphides, but these may not have been necessary (Magnall et al., 2015). The more distal deposits are therefore largely stratiform in that the mineralized zones are concordant with sedimentary layering, whereas proximal deposits show more complex metal zonation and replacement textures. Proximal deposits are more closely linked spatially with synsedimentary feeder faults. A clear understanding of structural geology and stratigraphy are therefore important aspects of exploration for SEDEX mineralization. Metal ratios, such as Ag/Pb, Pg/(Pb+Zn), Cu/(Zn-Pb), Zn/Fe and Zn/Ba typically increase towards the feeder faults and vents providing a vector towards the central and potentially higher-grade parts of the hydrothermal system. Both the Tom and Jason deposits are proximal SEDEX deposits (Goodfellow, 2007).

Other important guides to exploration for SEDEX mineralization include (after Goodfellow, 2007):

- The presence of footwall feeder zones involving silicification of the footwall sedimentary package, brecciation, veining and trace element enrichments (Cu, Co, Ni, Mo, As, Sb, Zn, Cd, Pb and Hg);
- Laterally extensive stratigraphic horizons equivalent to the main deposit lens with elevated Zn, Cd, As and Hg;
- Hanging wall alteration characterized by elevated Ba, Zn and Co, Ni and Cu (from pyrite);
- The presence of pyrite and/or pyrrhotite in vent complexes that may be detectable by electrical and/or electromagnetic geophysical exploration methods; and,
- Positive gravity anomalies that may be directly indicative of massive sulphide concentrations at depth.

Much of this research was carried out by the GSC prior to 1991. Exploration on the Jet Prospect, part of which lies on the Harlot and Harlow claims, has received minimal modern exploration and therefore, the potential for it on the Property remains unknown.

8.2.1 Nick-Type

Within SEDEX-type deposits, there is a sub-type called Nick-type, which contains Ni-Mo massive sulphide horizons that occur at predictable stratigraphic locations at the base of the Earn Group, with considerable lateral continuity. Nick-type horizons range in thickness from a few centimetres to multiple metres thickness (Carne, 1991).

The regional stratigraphy and geochemical signature demonstrate potential for Zn-Pb-Ag-Ni-Mo SEDEXand Nick-type mineralization, as reported in the MINFILE database and previous exploration results, as well as the fact that the RGS data includes strong values in these elements.

Although the Author makes general comparisons to the above-mentioned deposit types, the reader is cautioned that the Author cannot verify that these deposits are directly comparable with the mineralization at the Property.

9 Exploration

9.1 Introduction

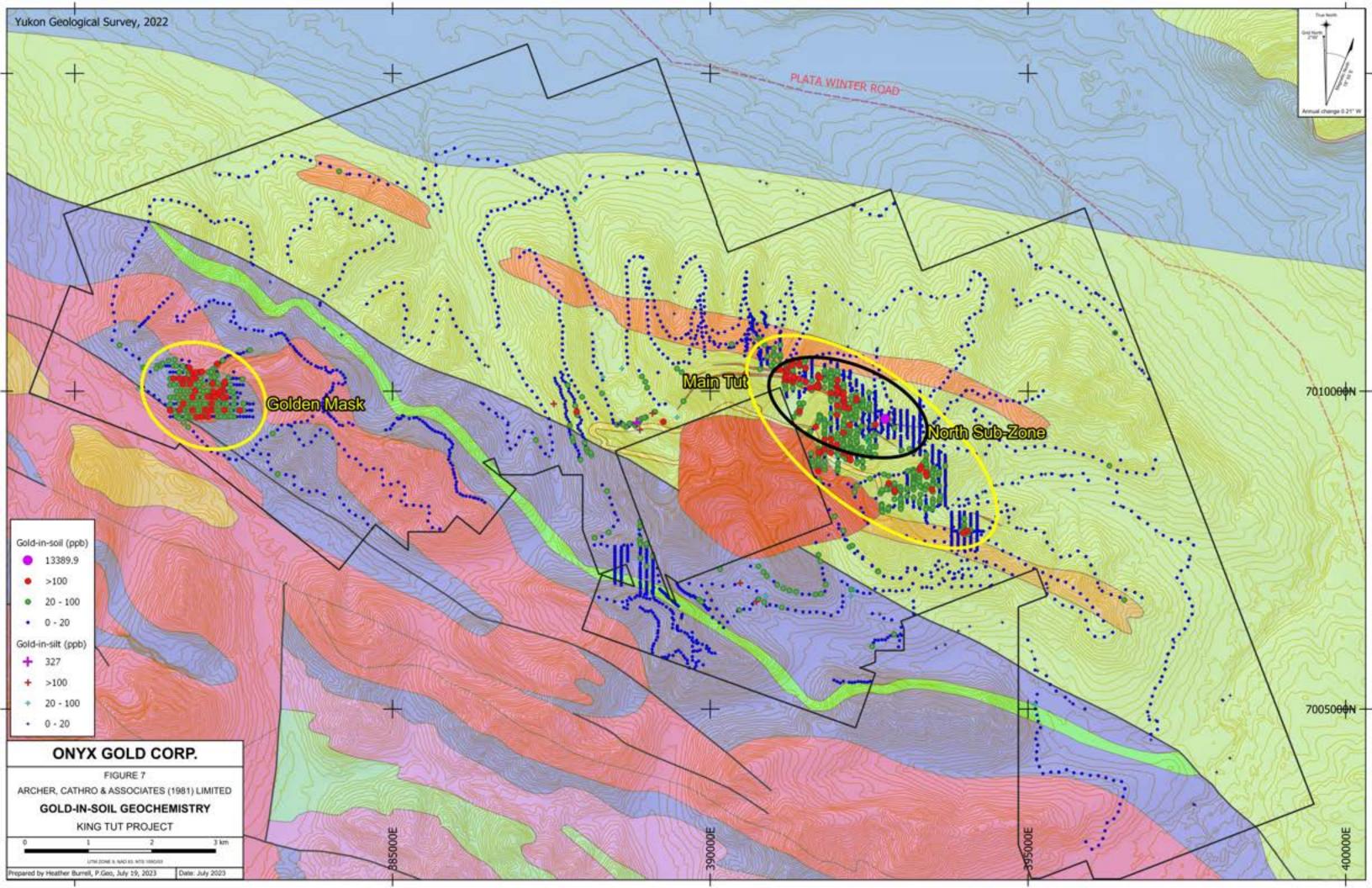
Onyx has not performed any exploration on the Property due to recent acquisition of the Project through the Plan of Arrangement with HighGold.

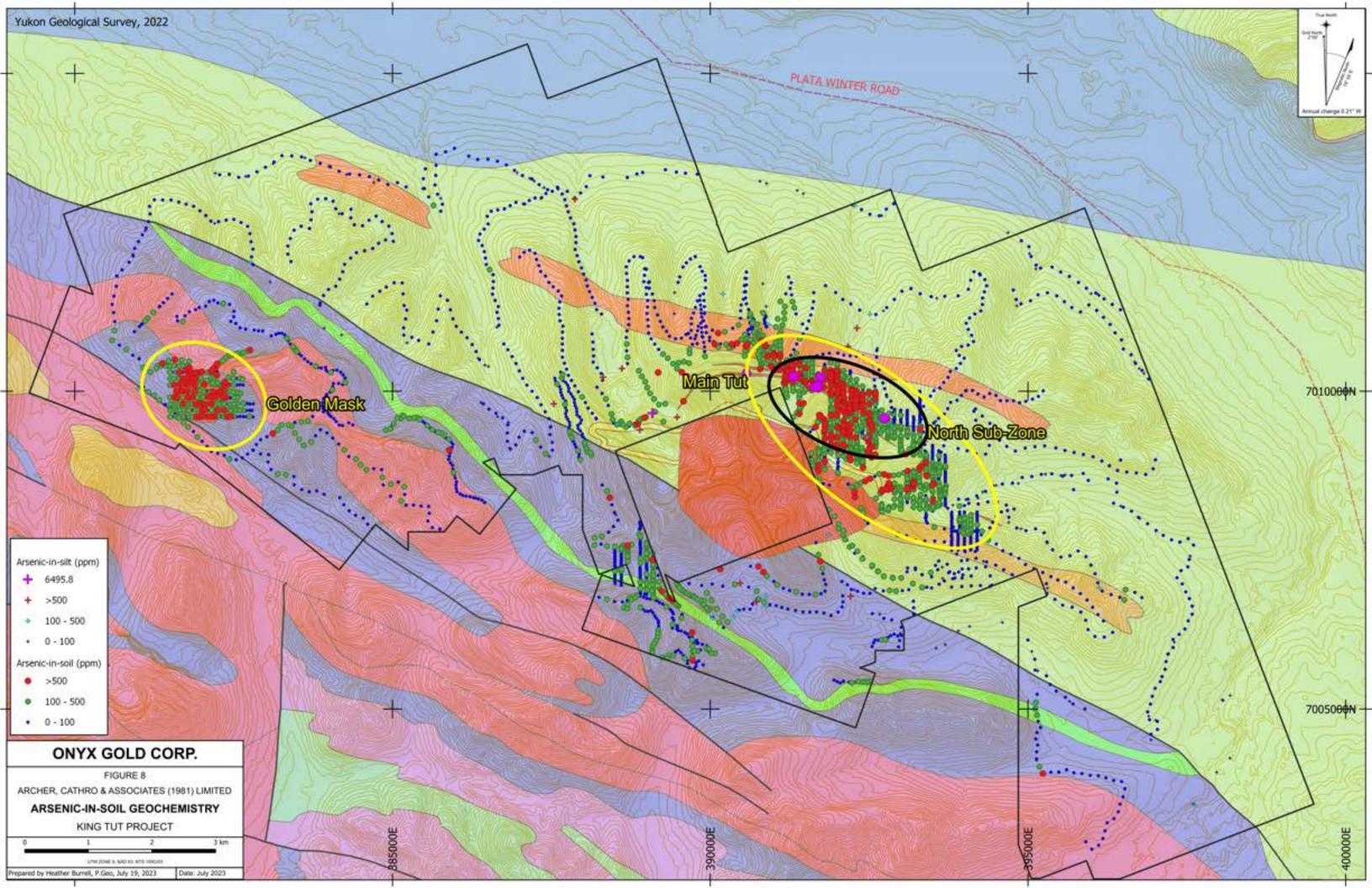
Onyx benefits from publicly available exploration data on, and adjacent to the Property. Results from modern (post-2010) exploration programs conducted by Constantine, Carlin Gold and Strategic Metals on King Tut will be used to inform and direct future exploration on the Property.

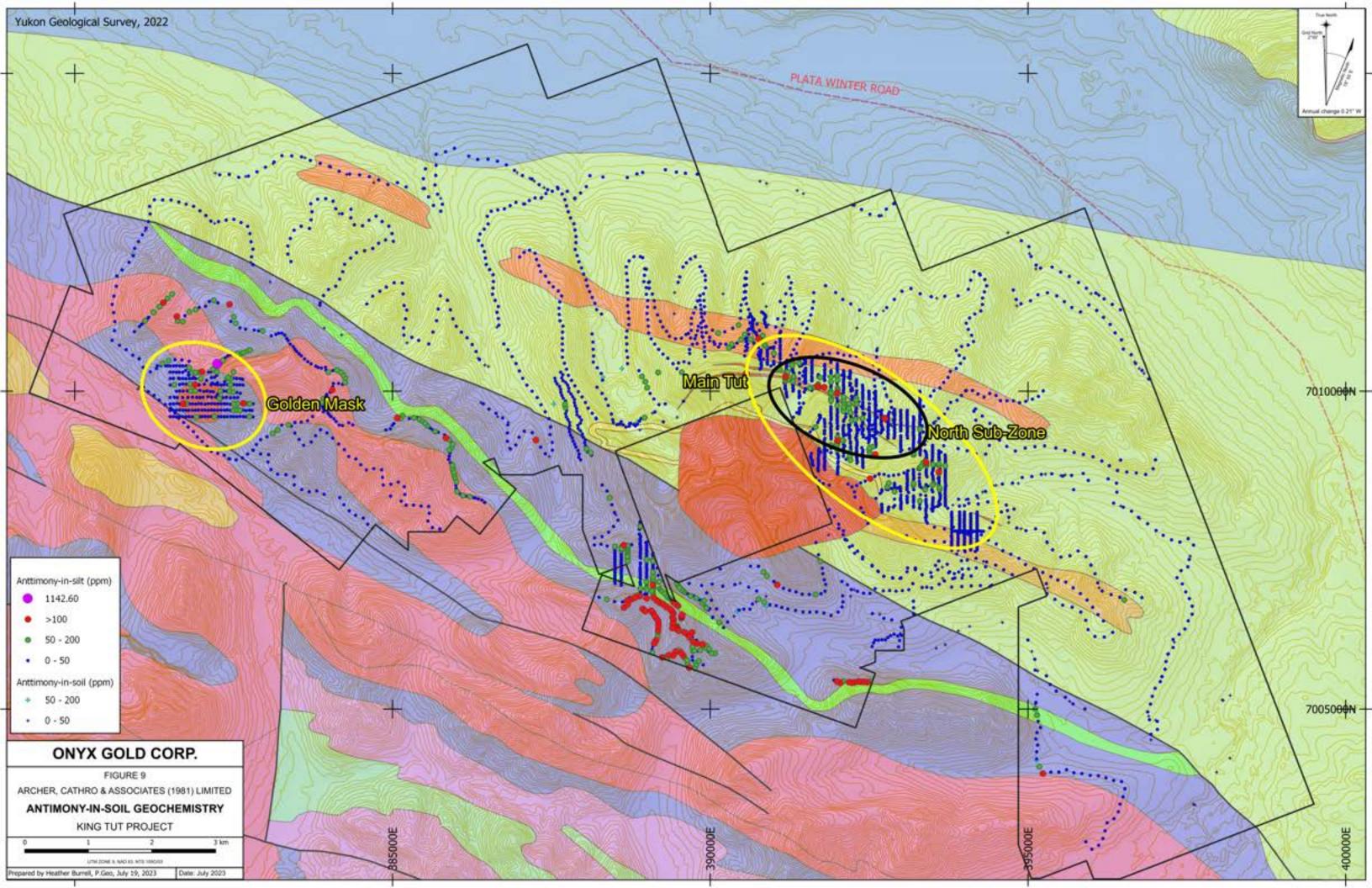
The Property sample database for samples collected by Constantine, Carlin Gold and Strategic Metals includes 316 rock samples, 3333 soil samples, 166 silt samples. Sampling procedures for the various field programs are described in the following assessment reports: Thomas et al., 2012; Morton and Burrell, 2012a; and, Morton and Burrell, 2012b.

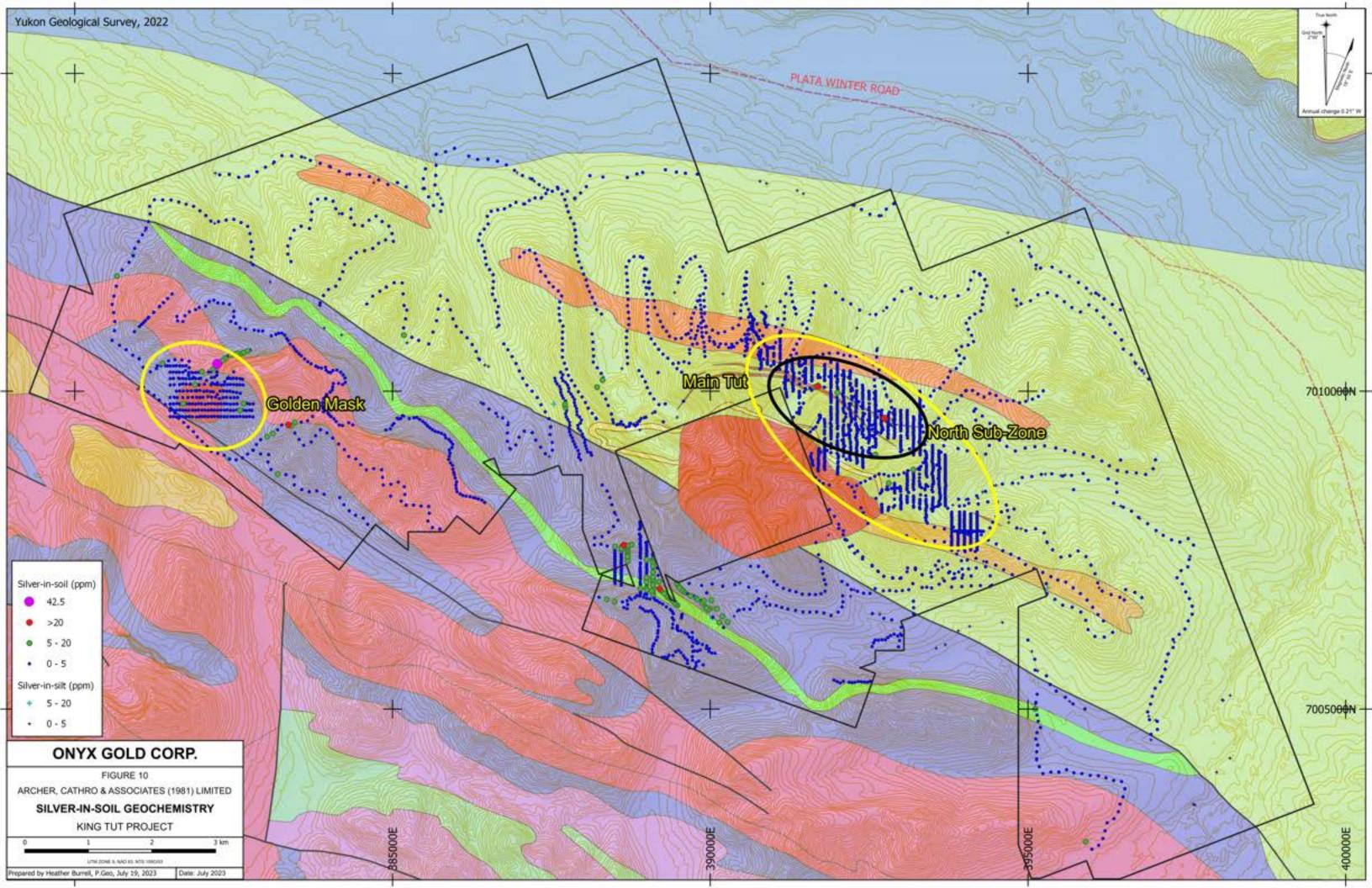
Soil, silt and rock sampling results from modern (post-2010) exploration programs are included in this section as the location data and analytical results were verified by the Author. Figures 7 to 13 illustrate thematic soil results for Au, As, Sb, Ag, Cu, Zn, and Pb, underlain by geology.

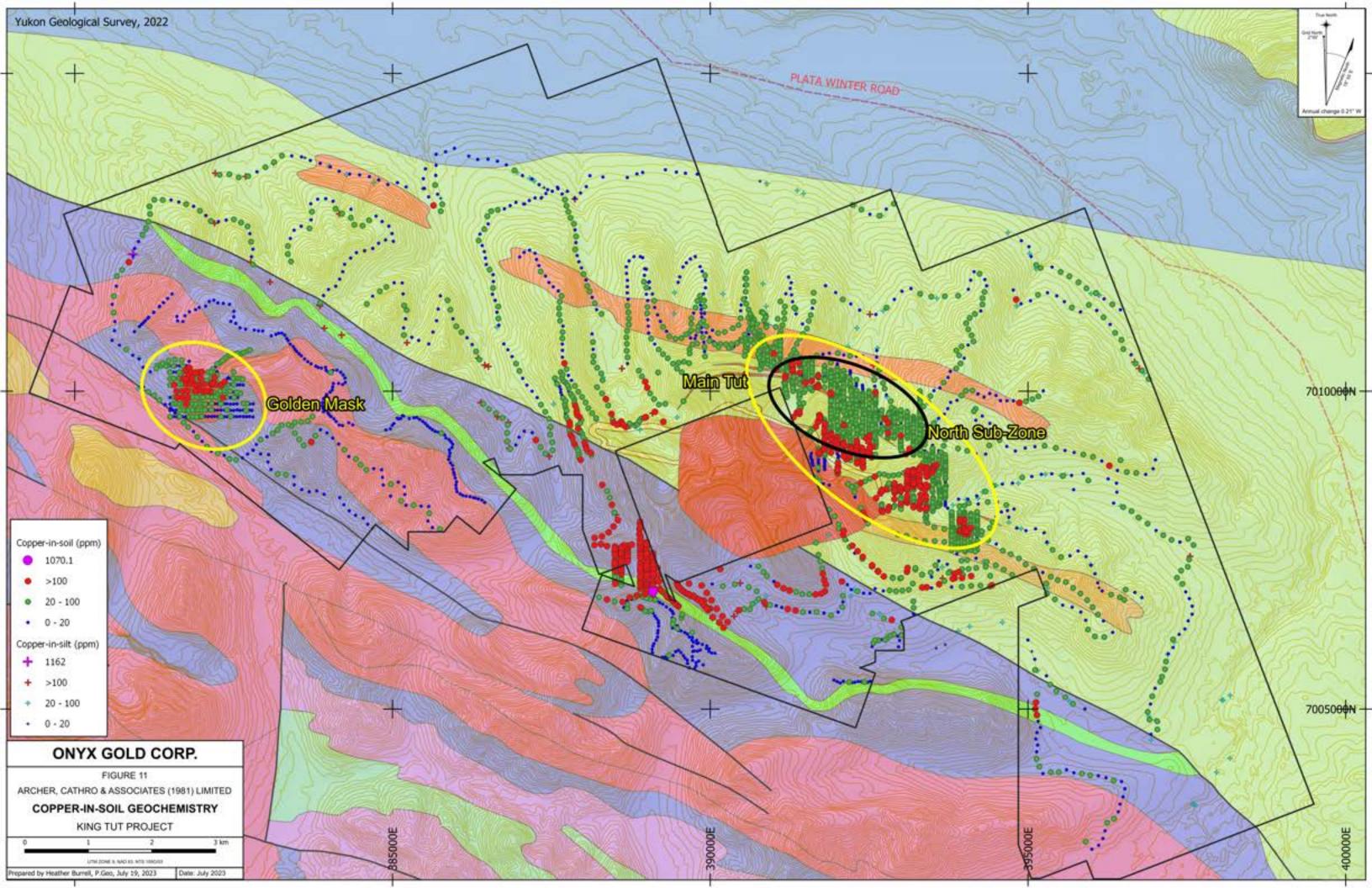
Anomalous thresholds and peak values for Au, Ag, As, Cu, Sb, Zn, Pb, Bi and Te soil samples collected from 2011 to 2012 are listed in Table 9.1.1-1.

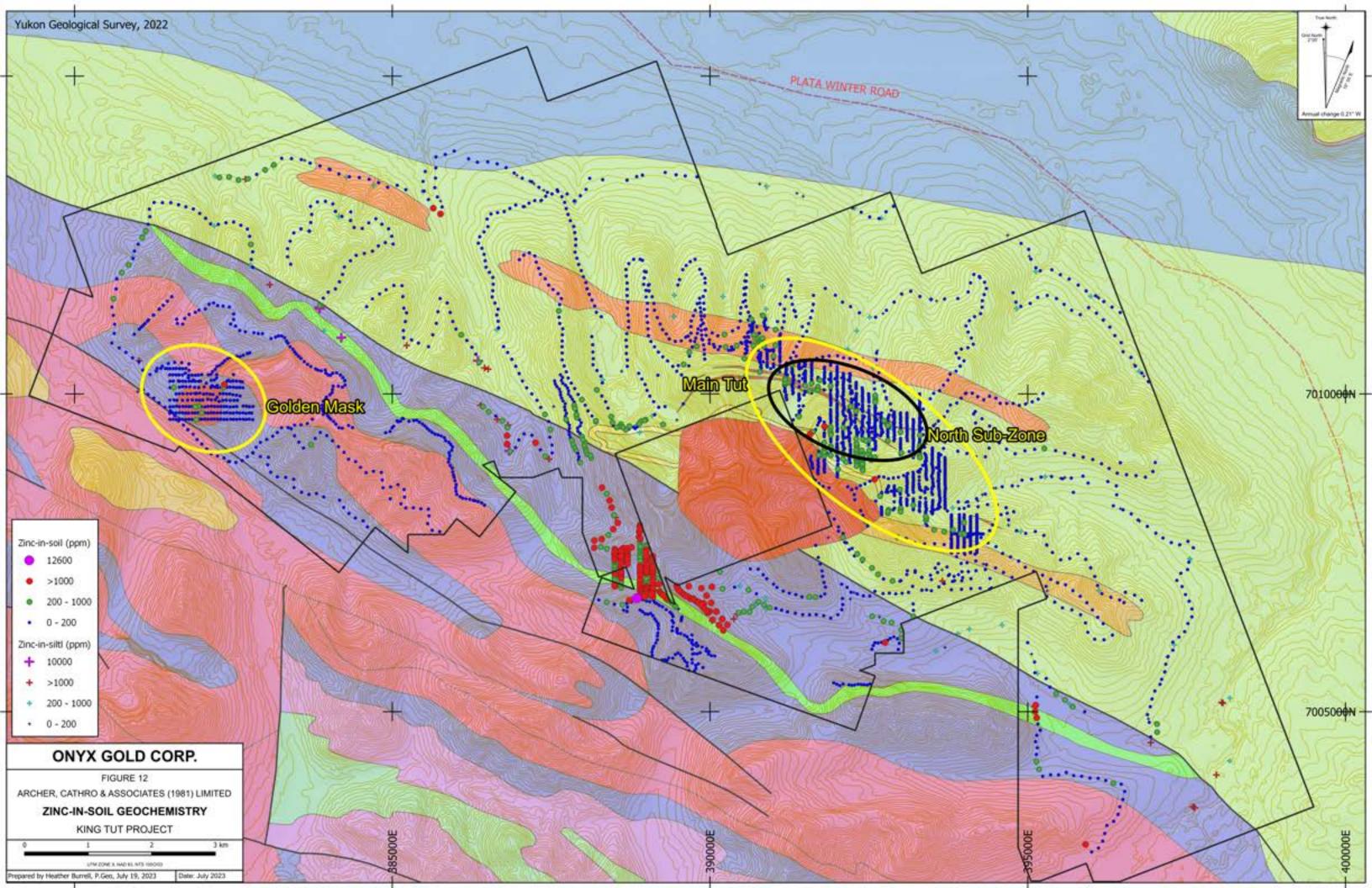

Element Weak Moderate Strong Peak 0 ≤ 20 20 ≤ 100 13,389.9 Au (ppb) ≥ 100 100 ≤ 500 >10,000 As (ppm) $0 \le 100$ ≥ 500 Ag (ppm) 0 ≤ 5 5 ≤ 20 ≥ 20 42.5 20 ≤ 100 1070.1 Cu (ppm) 0 ≤ 20 ≥ 100 200 ≤ 1000 Zn (ppm) 0 ≤ 200 ≥ 1000 12,600 Pb (ppm) 0 ≤ 50 50 ≤ 100 ≥ 100 3387.8 0 ≤ 20 20 ≤ 50 Bi (ppm) ≥ 50 206.4 0 ≤ 50 50 ≤ 200 2420 Sb (ppm) ≥ 200 0 ≤ 2 2 ≤ 5 1100 Te (ppm) ≥ 5

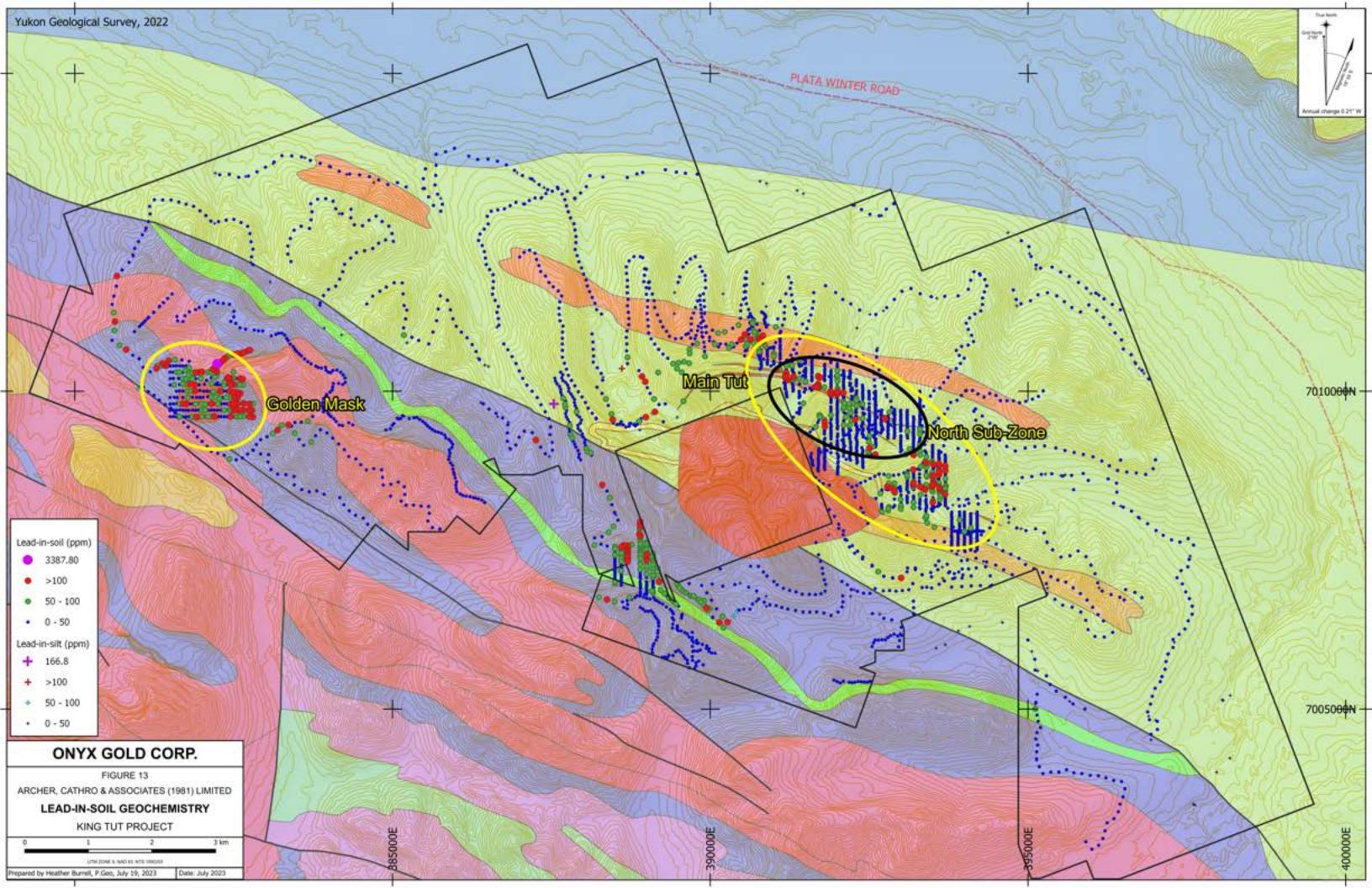

Table 9.1.1-1 – Soil Geochemical Thresholds


9.2 Surface Sampling


9.1.1 Silt Geochemistry


Publicly available Regional Geochemical Sampling (RGS) data (Friske et al., 1991; McCurdy et al., 2009) documents strongly anomalous Au, As, Hg, and Sb on the Property. Individual samples contain up to 350 ppb Au and 3800 ppm As, which are the fifth (Au) and second (As) highest values within the RGS database for the entire Selwyn Basin (McCurdy et al., 2009). Strongly anomalous RGS data for drainages on or directly adjacent to the Property, includes three samples in the 95th percentile for Au (\geq 17 ppb), six samples in the 95th percentile for As (\geq 75 ppm), four samples in the 95th percentile for Hg (\geq 382 ppb), and nine samples in the 95th percentile for Sb (\geq 8.3 ppm). The region demonstrates potential for Zn-Pb-Ag-Ni-Mo SEDEX-type mineralization, as demonstrated by the previous exploration results in the area





reported in the MINFILE database, as well as the fact that the RGS data includes strong values in these elements.

In 2011, the Constantine-Carlin Gold JV collected 166 silt samples. Results from this work were generally consistent with RGS data. Noteworthy results include up to 327 ppb Au-in-silt with six samples returning > 100 ppb Au and, As values up to 6496 ppm As-in-silt with eight samples returning > 1000 ppm As (Thomas et al., 2012).

9.1.2 Soil Sampling

During the 2011 and 2012 exploration campaigns on the Property, a total of 3333 soil samples were collected. Due to surficial weathering and alteration of the Mayo suite intrusions on the Property, soil development is poor in some areas. Soil samples collected were described as soil or talus fines and the results discussion below does not differentiate between soil and talus fines. The soil geochemical sampling has outlined two main areas with a RIRGS geochemical signature, the Main Tut and the Golden Mask, and a third, unnamed area with a SEDEX geochemical signature.

9.1.2.1 *Main* Tut *Anomaly*

The Main Tut anomaly is located near the centre of the Property within the contact metamorphic aureole surrounding the northern side of the large quartz monzonite stock. It has an arcuate shape that is over six kilometres in length and 200 to 1500 m in width. It is defined by a broad zone of moderately to strongly anomalous Au-in-soil values to a **peak of 13,389.9 ppb Au**, with coincident strongly anomalous As-in-soil values over 500 ppm, to a peak value above detection limit (>10,000 ppm).

Within the broad Main Tut anomaly there are three discrete sub-zones defined by clusters of \geq 1000 ppb Au and \geq 500 ppm As. The most prominent sub-zone within the broader anomaly is referred to as the 'north sub-zone' which is 1400 m in length and contains eight samples returning greater than 1000 ppb Au-in-soil up to 13,389.9 ppb Au-in-soil. The 'north sub-zone' hosts coincident As values greater than 1000 ppm As-in-soil and the soil geochemistry appears to be spatially associated with the quartz porphyry aplite dykes.

The Main Tut anomaly also hosts coincident strongly anomalous values for Sb (up to 465.7 ppm), Bi (up to 206.4 ppm) and Te (up to 21.4 ppm).

Photo 9.1.2.1-1 – Main Tut valley

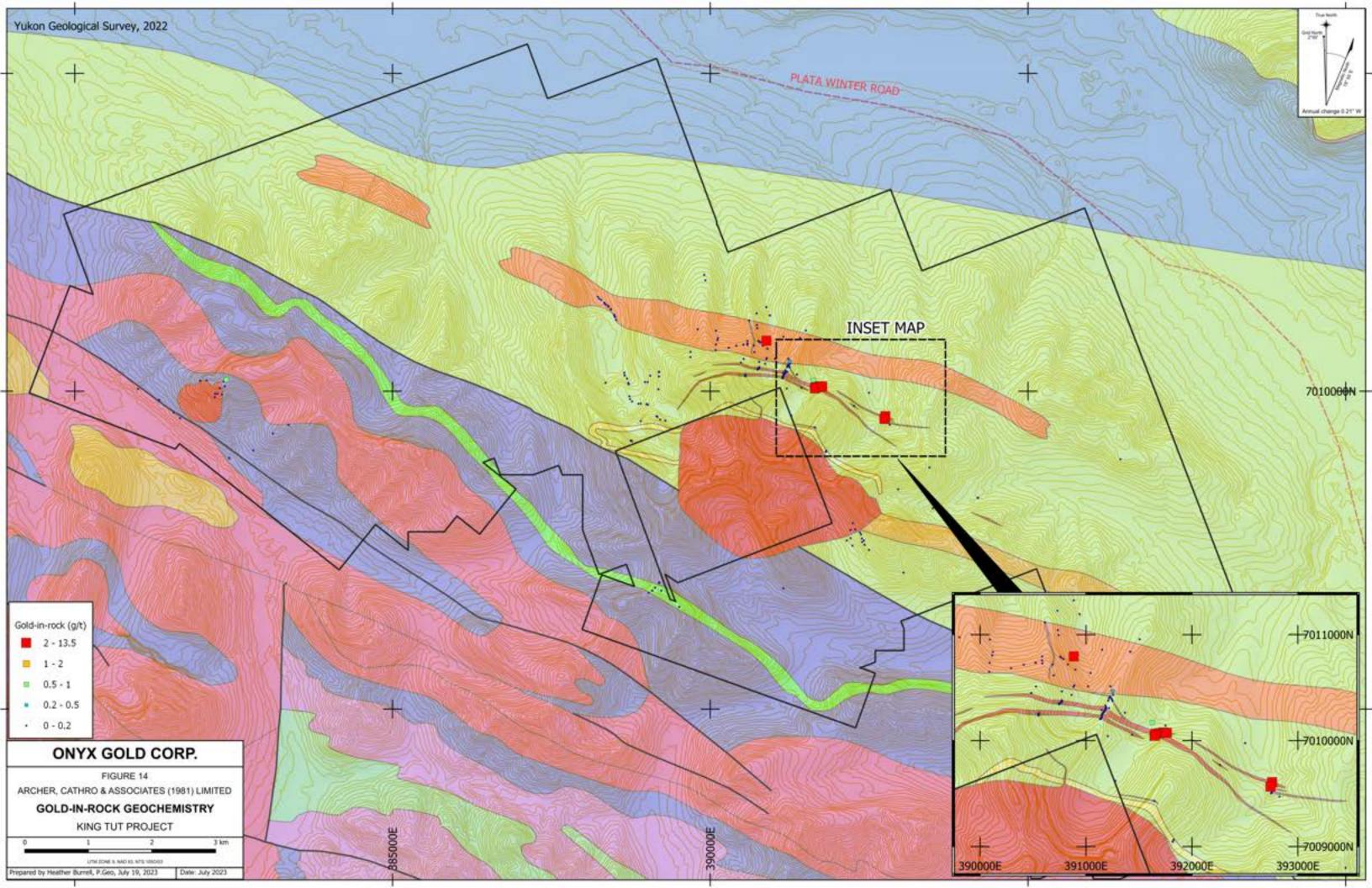
9.1.2.2 Golden Mask Anomaly

The Golden Mask anomaly is located approximately nine kilometres west of the Main Tut anomaly and it occurs within and adjacent to the apex of the small, 500 by 500 m, quartz monzonite stock. The Golden Mask anomaly is roughly one kilometre by one kilometre in size and hosts coincident strongly anomalous Au and As values. The Golden Mask anomaly is almost entirely comprised of samples that returned > 20 ppb Au, with a majority of samples in excess of 50 ppb Au to a **peak of 1423 ppb Au-in-soil.** As-in-soil values within this anomaly are generally > 100 ppm As, with numerous samples returning > 500 ppm As. The anomaly is open for expansion to the southwest, south and north.

The Golden Mask anomaly is accompanied by anomalous Bi (up to 59.9 ppm) and Te (up to 4 ppm), in addition to less spatially extensive anomalous values for Ag (up to 42.5 ppm), Sb (up to 1142.6 ppm) and Fe (up to 24.7 ppm). Additional soil sampling is required in these areas to the better define the limits of the anomaly.

Photo 9.1.2.2-1 – Golden Mask anomaly area in foreground

9.1.2.3 Other Target Areas


The best SEDEX pathfinder element soil geochemical response lies four kilometres southwest of the Main Tut anomaly within the contact zone between the Earn and Road River groups. It is approximately two-kilometre-long by 300 to 400 m wide and defined by coincident anomalous Ag, Zn, Ni, Tl, Se, Te, Hg, Sb, Mo, and Cu geochemistry. The anomaly includes a majority of soils with Ag values > 5 ppm, and several > 10 ppm (up to 24.6 ppm Ag). The majority of samples within the SEDEX anomaly **returned > 1000 ppm Zn**, with a total of 16 samples exceeding the upper detection limit for Zn (10,000 ppm) to a peak **of 12,600 ppm Zn**.

This anomaly has an unusual multi-element signature, similar to Zn-Ni SEDEX-type mineralization at the 'Nick' prospect in central Yukon (Carne, 1991).

9.1.3 Rock Sampling

In 2011, a total of 316 rock samples were collected on the Property, including rock samples of float and outcrop, and chip samples from measured chip lines. Forty-seven of the 316 rock samples contained > 0.1 g/t Au with 17 yielding > 0.5 g/t Au and 11 returning > 1 g/t Au, to a maximum of 13.5 g/t Au (Thomas et al., 2012). All but one of the elevated Au rock values was collected within the Main Tut soil anomaly. Figure 14 illustrates Au-in-rock thematic results.

Continuous, measured chip sample lines were completed across heavily fractured and locally veined aplite dykes and hornfels country rock exposed along the central axis of the 'north sub-zone' within the Main Tut soil anomaly. The aplite dykes were chip sampled in three areas, each spaced approximately 500 m

apart. Sample lines ranged from 24 to 144 m in length, with no single sample exceeding three metres length.

The chip line located near the core of the Main Tut soil anomaly yielded a length weighted average of **0.284 g/t Au over 111.8 m**. This chip line included a **0.52 g/t Au over 29 m** (11 samples returning 238 to 2123 ppb Au) and a separate section of **0.46 g/t Au over 24 m** (six samples returning 264 to 930 ppb Au, plus one hornfels sample that returned 22 ppb Au). Au values from samples of hornfels-altered sedimentary rocks marginal to the dykes were negligible (Thomas et al., 2012).

Chip sampling conducted across the aplite dyke zone 550 m to the west of the above-described chip sample line yielded generally low gold values. Only five out of 52 samples collected across the chip line contained >50 ppb Au. Soil samples collected down slope of this chip line yielded some of the highest Au numbers of the survey area (three samples >1000 ppb Au and a high of **2892 ppb Au**) - suggesting either the dyke is not the source of Au-in-soils or near surface leaching/weathering has selectively eroded and transported vein/fracture-controlled mineralization in the exposed dykes. Notably, talus and overburden cover a large portion of the bedrock geology within the Main Tut soil anomaly and understanding of the controls on mineralization are preliminary (Thomas et al., 2012).

Rock samples collected in the vicinity of the SEDEX soil anomaly in 2007 returned 18.35% Zn and 3270 ppm Ni (Gregory, 2008). Due to the 2007 collection date, these results should be treated with caution, but may be useful to inform future exploration on the Property.

9.3 Geophysics

A regional airborne magnetic geophysical survey compilation that included the Property area was initiated in 2019 by the GSC (Onschuck, et al., 2022). The original regional magnetic data used during the compilation was collected at 200 m to 1000 m line spacing. The compiled magnetic data and first vertical derivative of the magnetic data are available on the GeoYukon website. Figure 6 illustrates the first vertical derivative magnetic signature in the vicinity of the Property. In 2006, C. Hart published a brochure on behalf of YG highlighting the strong regional magnetic response with hornfels sediments and the weak magnetic response with the reduced (magnetite-poor) Tombstone suite intrusions (Hart, 2006).

No Property-scale geophysical surveys have been conducted by Onyx.

9.4 Results and Interpretation of Geophysical Data

Observations related to the geophysical survey are based on similarities to data published by Hart, 2007. The Main Tut intrusion, which is mapped as a 3100 by 2100 m body (GeoYukon, 2023), is marked by a donut-shaped magnetic anomaly on the regional airborne survey. A magnetic low underlies the area mapped as Mayo Suite, while the adjacent hornfelsed sedimentary units exhibit a very strong magnetic signature.

The Golden Mask stock, which is mapped as a 600 by 400 m intrusion (GeoYukon, 2023), has a low to moderate magnetic signature, while the ground immediately south of it has a stronger magnetic signature.

The compiled, coarse resolution regional magnetic geophysical results have not been specifically reviewed by a Professional Geophysicist, and such review is recommended by the Author.

Page Left Intentionally Blank

Report Date: August 1, 2023 Page **52 of 73**

Technical Report on the King Tut Project Archer, Cathro & Associates (1981) Limited

10 Sample Preparation, Analyses and Security

10.1 Introduction

Onyx has yet to perform work on the Property and therefore, there is no current information on sample preparation, analysis and security procedures.

Historical sampling procedures are documented in reports outlining the 2011 and 2012 sampling campaigns on the Tut, Harlot and Harlow claims. Results prior to the 2011 field program have not been independently verified. Historical data (pre-2011) is a useful reference for this early stage of exploration but must be treated with caution.

No standards, duplicates of blanks have been included in any of the sample shipments from the Property due to the early stage of exploration.

It is the opinion of the Author that the exploration programs conducted in 2011 and 2012 on the Property were well detailed in the available reports and conducted within industry standards for this stage of exploration activity. The sample collection, shipment preparation, transportation and analytical procedures were carried out at an appropriate standard, as described below.

10.2 Stream Sediment and Soil Sample Analysis

In 2011, all soil and silt samples collected on the Property by the Constantine-Carlin Gold JV were dried and sieved at a base camp and analyzed with a portable x-ray flourescence unit prior to shipping to Acme Analytical Laboratories (Vancouver) Ltd. (AcmeLabs) in Whitehorse. In 2012, all soil samples collected on the Property by Strategic Metals were flown off the Property and transported by truck to ALS Global (ALS) laboratory in Whitehorse, Yukon. The ALS laboratory is certified to ISO 9001:2008 standards and received ISO/IEC 17025:2005 (withdrawn and replaced with ISO/IEC 17025: 2017) accreditation from the Standards Council of Canada for this method. Neither AcmeLabs or ALS laboratories have an association with Onyx or the Author.

In 2014, AcmeLabs became Bureau Veritas Commodities Canada Ltd. and the ISO information from AcmeLabs was not verified during the writing of this Technical Report. Tables 11.1-1 and 11.2-2 list the analytical technique details for the Constantine-Carlin Gold JV and Strategic Metals sampling programs on the Property.

Table 11.1-1 – Constantine-Carlin Gold JV's 2011 soil and silt analytical technique – AcmeLabs

2011 soil	Technique	Digestion	Comment
Sample Prep	No Prep		Sorting of samples on arrival and labeling
Analysis	1DX2	Aqua Regia	35 elements plus Au determination by ICP-MS analysis

Table 11.1-2 – Strategic Metals' 2012 soil sampling preparation and analytical technique – ALS

2012 soil	Technique	Digestion	Comment
	WEI-21		Received sample weight
Sample Prep	LOG-22		Sample login
	SCR-41		Screen to -180µm and save both
	Au-ICP21	Aqua Regia	Au by fire assay and ICP-AES
Analysis	ME-MS41	Aqua Regia	Sample analyzed by a combination of ICP-MS and ICP-AES

10.3 Rock Sample Analysis

In 2011, rock samples collected by the Constantine-Carlin Gold JV were prepped in the AcmeLabs Whitehorse preparation facility, and then shipped to Vancouver for analysis using ICP-MS and fire assay fusion ICP-ES for Au. Table 11.2-1 outlines rock sample preparation and analytical techniques.

For samples reporting upper analytical limit for Au (10 ppm), Ag (100 ppm), Zn (10,000 ppm) and Pb (10,000 ppm), subsequent over limit assays were typically completed.

Table 11.2-1 - 2011 Rock sampling preparation and analytical techniques – AcmeLabs

2011 Rock	Technique	Digestion	Comment
Sample	P200 250		Crush, split and pulverize 250 g rock to 200
Prep	R200-250		mesh
	1DX2	Aqua Regia	35 elements by ICP-MS analysis
Analysis	3B		30 g sub-sample analyzed by fire assay
			fusion by ICP-ES
	G6		Lead collection fire assay fusion –
			gravimetric finish
	7AR	Aqua Regia	ICP-ES finish

11 Data Verification

11.1 Introduction

The Author has reviewed all sample location and analytical information provided by Onyx and all publicly available assessment reports.

The Author believes that sample preparation and security, and the analytical procedures used to analyze the samples collected by the Constantine-Carlin Gold JV and Strategic Metals during the 2011 and 2012 exploration programs on the Property are adequate and fit for purpose of this report. In the Author's opinion the data provided in this technical report is adequately reliable.

11.2 Database Validation

Assay data from 2011 and 2012 were reviewed by the Author. The geochemical data was verified by sourcing analytical certificates and digital data. Randomly selected original assay certificates were compared to reported text and figures. No discrepancies were identified.

It is the opinion of the Author that the exploration data provided by Onyx is accurate and fit for the purpose of this report.

11.3 Quality Control

The King Tut Project is an early-stage surface exploration project and no QA/QC blanks, standards or duplicates have been inserted into sample shipments to date.

In the Author's opinion, the sample preparation, sample shipment and analytical procedures are adequately reliable for the purpose of this Technical Report. In future exploration programs, standards, field and lab duplicates and blanks are recommended for any drill programs.

11.4 Site Inspection

A site visit was conducted by the Author on June 15, 2023. The Author traversed the strongly anomalous Au-in-soil anomaly at the Golden Mask area. The Author visited numerous soil sample sites that yielded > 200 ppb Au-in-soil, including the sample sites that returned 1133.6 ppb and 1423.4 ppb Au-in-soil. Soil samples in the area are a combination of talus fines and poorly developed soil, as the intrusive stock is heavily altered and weathered.

Photo 12.4-1 – Site visit on June 15, 2023 at the Golden Mask. Helicopter is parked near the contact between quartz pebble conglomerate, Earn Group, and biotite-quartz monzonite/granite, Mayo suite stock.

A claim post inspection was done in the Golden Mask area during the site visit. Post 2's of YE36202 and YE36203, Tut 532 and Tut 533, were located within reasonable GPS error of the location shown on Figure 2 and reported on GeoYukon.

Prior to the site visit, the Author had not worked on the Tut claims, but had conducted prospecting and soil sampling on the Harlot and Harlow claims in 2012.

In the Author's opinion, the data provided in this report is adequately reliable for its purpose.

12 Mineral Processing and Metallurgical Testing		
Not applicable. The Project is at the earliest stage of exploration.		
Page Left Intentionally Blank		
Page Lejt Intentionally Blank		

13 Mineral Resource Estimates Not applicable. The Project is at the earliest stage of exploration.	
Page Left Intentionally Blank	

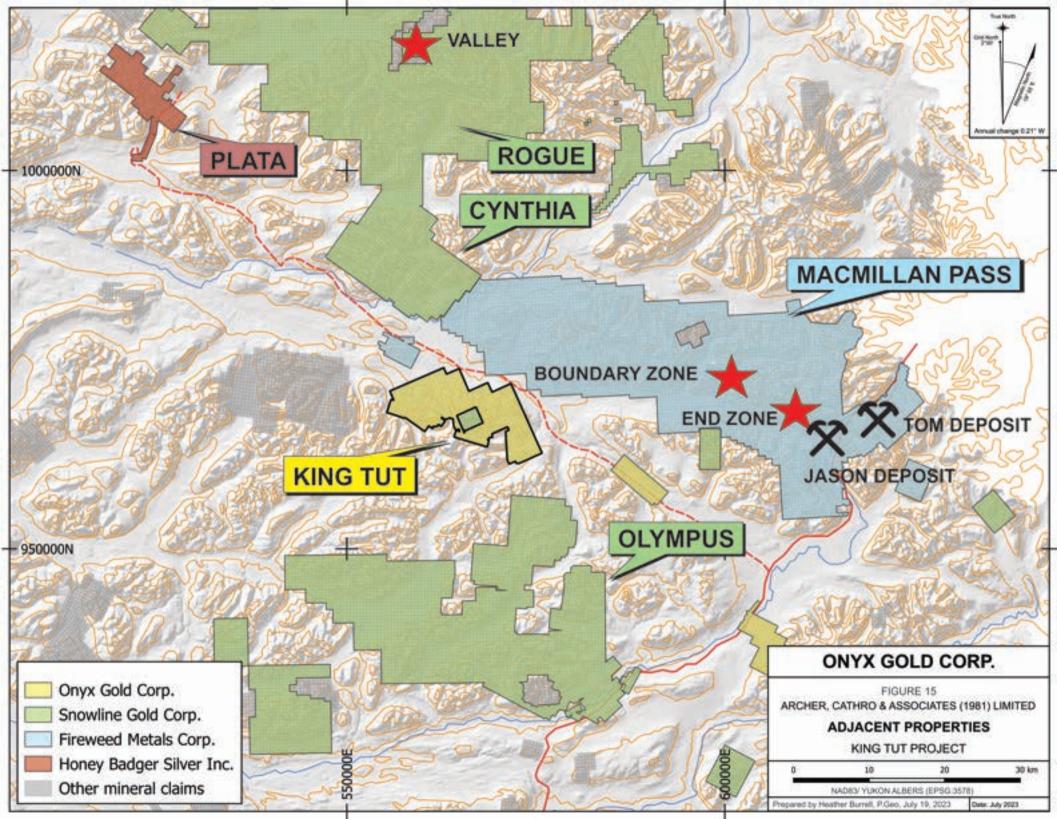
23 Adjacent Properties

23.1 Plata Project - Honey Badger Siler Inc.

King Tut lies immediately south of the 110 km long Plata Winter Road, which extends from the North Canol Road to Honey Badger Silver Inc.'s Plata Project. The winter road was used several decades ago to mobilize heavy equipment to Plata, and is partially overgrown, whereas the North Canol Road is a government-maintained gravel road, which extends northeast from Ross River to development projects near the border between the Yukon and Northwest Territories, including Fireweed Metals Corp.'s Macmillan Pass Project (Figure 15).

The Plata Project covers multiple Ag-, Au-, Pb- and Zn-bearing veins and stockwork zones, which are believed to be associated with hydrothermal fluids related to Tombstone Suite intrusions. Historical work, performed on an intermittent basis since veins were discovered in 1969, has included trenching, reverse circulation and diamond drilling, geophysical surveying, limited underground exploration and local, high-grade mining from a number of shallow open cuts. The production work resulted in a total of approximately 2015 tons of hand sorted material shipped from the property, yielding about 290,000 ounces of Ag (Morton, 2020).

23.2 MacMillan Pass Project – Fireweed Metals Corp.


Fireweed Metals' C. Macmillan Pass land package extends from Macmillan Pass, approximately 44 km east of the Property, to within one kilometre of it. Fireweed Metals' property covers the SEDEX-type, Zn-Pb-Ag-Ba Tom and Jason deposits in the eastern part of the claim block, and the Boundary Zone in the central part of the property.

Recent diamond drilling at the Boundary Zone yielded an intercept of 12.3% Zn, 1.3% Pb and 45.9 g/t Ag over 124.5 m, including 19% Zn, 1.6% Pb and 64.7 g/t Ag over 60 m (Fireweed Metals Corp., 2023). In 2018, Fireweed Metals published an updated, combined resource estimate for the Tom and Jason deposits. The estimate designated 11.21 Mt in the indicated category, with average grades of 6.59% Zn, 2.48% Pb and 21.33 g/t Ag, and 39.47 Mt in the inferred category, with average grades of 5.84% Zn, 3.14% Pb and 38.15 g/t Ag (Arne and McGarry, 2018).

23.3 Rogue Project – Snowline Gold Corp.

The King Tut is located 43 km south of Snowline Gold Corp.'s Rogue target area, which is part of a much larger claim block extending to within seven kilometres north of King Tut. Rouge covers several RIRGS Au occurrences associated with members of the Tombstone (Mayo) plutonic suite intruding Selwyn Basin sedimentary rocks.

The two principal target areas are referred to as Valley and Gracie, which are situated approximately five kilometres apart along an east-west trend. Various styles of mineralization have been recognized on the project. At Valley, sheeted, Au-bearing quartz veins are observed within an intrusion, and Au-bearing veins dominated by sulphides, particularly arsenopyrite, as well as rare visible Au, are observed in the surrounding hornfels. Other styles of mineralization include disseminated sulphides and fine quartz veining replacing calcareous sediments, and pyrrhotite-rich, Au and Cu bearing skarns. The Gracie target is an inferred blind intrusion, thought to be present based on geochemical correlations, rock alteration and geophysical response (Berdahl and Lewis, 2020; Snowline Gold Corp., 2023a).

In 2022, diamond drilling at the Valley target yielded highlight intercepts of 2.18 g/t Au over 401 m from hole V-22-010, 1.89 g/t Au over 410 m from hole V-22-007, and 1.43 g/t Au over 437 m from hole V-22-029 (Snowline Gold Corp., 2023b).

In March 2023, B2Gold Corp. completed a strategic investment into Snowline Gold, acquiring shares representing approximately 5.0% ownership of the company, followed by an on-market transaction in June that increased its ownership stake in the Company to 9.90% (Snowline Gold Corp., 2023c; 2023d).

24 Other Relevant Data and Information

To the Author's knowledge, there is no additional information or explanation necessary to make this Technical Report understandable and not misleading.

25 Interpretation and Conclusions

Previous work on the Property have demonstrated the potential for it to host RIRGS- or SEDEX-type orebodies.

25.1 Main Tut Target

Reconnaissance mapping completed by the Constantine-Carlin Gold JV over a portion of the Main Tut Auin-soil anomaly has resulted in some preliminary conclusions regarding the setting for Au mineralization within the 'north sub-zone' of the Main Tut anomaly. The core of the 'north sub-zone' correlates with altered and heavily fractured, quartz phenocryst-bearing aplite dykes that are commonly associated with quartz-arsenopyrite veining. Dykes within the anomaly area average 35 to 50 m in width and are located near the outer edge of a contact metamorphic aureole, approximately one kilometer outboard of a quartz monzonite stock. The dykes form an arcuate pattern parallel to the northern contact of the quartz monzonite stock. Fractures within the dykes are tightly spaced (one to 10 cm) and commonly coated with coarse muscovite, arsenopyrite and quartz. Fracturing is typically at a high angle to dyke contacts and persistent throughout.

Quartz-arsenopyrite veins are common and occur both parallel and at a shallow angle to the dominant fracture set. Selective sampling of quartz-arsenopyrite vein material yielded values ranging from 2 g/t to 13.5 g/t Au. Continuous, representative chip samples across the aplite dyke exposed near the center of the soil anomaly yielded a length weighted average of 0.284 g/t Au over 111.8 m, including 0.52 g/t Au over 29 m, and a separate section of 0.46 g/t Au over 24 m. Samples of hornfels-altered sedimentary rocks marginal to the dyke contain negligible Au. Chip sampling conducted across the aplite dyke zone 550 m to the west of the above-described chip sample line yielded a high value of just 89 ppb Au, and only five out of 52 samples collected across the chip line contained >50 ppb Au. Soil samples collected down slope of the chip line yielded some of the highest Au numbers of the survey area (three samples >1000 ppb Au and a high of 13,389.9 ppb Au), which suggests that either the dyke is not the source of Au-in-soil anomaly or near surface leaching/ weathering has selectively eroded and transported vein- or fracture-controlled mineralization in the exposed dykes. Notably, talus and overburden cover a large portion of

the bedrock geology within the soil survey area and understanding of the controls on mineralization are preliminary (Thomas et al., 2012).

The mineralized aplite dykes are hosted within tightly folded, hornfelsed shale and fine-grained sandstone of presumed Mississippian age (Cecile and Abbott, 1989). Rocks within the hornfels zone contain significant disseminated pyrite and pyrrhotite, and rare 'needle' arsenopyrite. Hornfelsed rocks within the contact aureole are well indurated, and relatively resistant in comparison to rocks outside the aureole that weather more recessively. An approximately 50 m wide unit consisting of alternating meter-scale bands of carbonate (marble) and mixed siliciclastic closely follows the northern contact of the main quartz monzonite stock and defines a tight synformal fold closure to the west.

The 'north sub-zone' within the Main Tut Au-in-soil anomaly appears to be spatially and genetically associated with mineralized aplite dykes. More geological information is required for adequate explanation throughout the remainder of the anomaly as there are no other mapped aplite dykes, so it is uncertain what form the mineralization takes.

25.2 Golden Mask Target

The Golden Mask soil anomaly, located nine kilometres west of the Main Tut soil anomaly, has not been mapped in detail, but geological observations made during the soil sampling program indicate that the anomalous Au and As values are spatially associated with a small intrusive stock (Thomas et al., 2012). It appears that it is the uppermost, apical portion of the intrusive that is exposed, which is fine grained, altered and challenging to differentiate from the hornfelsed country rock. Using the RIRGS model, the apexes of intrusions are considered to have some of the highest potential for sheeted vein zones.

The anomalous Au-bearing areas so far defined appear to be <u>intrusion-related and represent excellent follow-up targets for drill targeting.</u>

25.3 SEDEX Potential

Some of the Property was explored under the Jet Prospect, which contains regionally significant SEDEXand Nick-type mineralization. The Property hosts rock, soil and silt anomalies with SEDEX-type geochemical signatures. This anomaly has an unusual multi-element signature, similar to the 'Nick' prospect in central Yukon (Carne, 1991).

25.4 Presence of Major Structures

There are two major thrust faults mapped on the Property. The presence of significant fault structures, such as the main thrust that bisects the middle of the Property, highlights the potential for structurally controlled mineralization and transport of mineralized fluids to more distal areas away from the magmatic source.

The trace of the second thrust fault lies south of the Golden Mask soil anomaly and the stock. The east edge of the stock, and the east edge of currently defined Au-in-soil anomaly, is bordered by a narrow wedge of a hornfelsed sequence of siltstone-limestone-shale, which is bordered to the east by a prominent north-south fault that appears to partly define the east border of the Au anomaly. Rocks exposed east of this fault are quartz pebble conglomerates of the Earn Group. Detailed geological mapping is required to determine the extent of these preliminary observations.

25.5 Risks and Opportunities

The remote location of the Property has risk associated with it, in terms of access, infrastructure and the early-stage exploration targets. Recent discoveries and project advancements in the Project area by Snowline Gold and Fireweed Metals may provide synergies reducing potential infrastructure costs in the future, but these potential synergies are highly speculative at this point in time.

The Author believes the King Tut is an exploration project with excellent potential to host RIRGS or SEDEX mineral deposits.

Page Left Intentionally Blank

26 Recommendations

Based on the encouraging exploration results on the Property to date, the Author believes that ongoing exploration work, including an initial diamond drill program, is warranted to further evaluate the Golden Mask and Main Tut targets. Reconnaissance-level prospecting and geochemical sampling is also encouraged on the remainder of the claims to identify other potential RIRGS and/or SEDEX targets.

A recommended two-phase work plan and budget totaling **\$2.25M CDN** is shown in Table 26.1-1 and Table 26.2-1 and is detailed below. The execution of Phase 2 is contingent on the results from Phase 1.

26.1 Proposed Phase 1 Work Plan and Budget

The Phase 1 work plan with a budget totaling \$800K CDN would include:

Completion of airborne drone-magnetic geophysical surveys and airborne LiDAR surveys to provide detailed base layers for geological interpretation and modeling:

Carrying detailed geological mapping at the Golden Mask and Main Tut targets to refine mapped geological contacts and determine preferred orientation of veins and mineralized zones for drilling;

Infilling and extending existing soil grids at Golden Mask and Main tut targets to augment geochemical database;

Completion of new contour and grid soil lines over other prospective stratigraphy on the Property;

Initiation of Class 1 permitting for a preliminary 2,500-meter drill program on the Property; and,

Initiation of stakeholder engagement and community relations.

26.2 Proposed Phase 2 Work Plan and Budget

The scope and budget of a potential Phase 2 work plan would be conditional on the results of the Phase 1 work plan. For conceptual planning, it is assumed the Phase 2 work plan would consist of a nominal \$1.45M CDN budget that would include:

Ongoing geological mapping, prospecting, soil and rock geochemical sampling over key prospect areas;

Execution of a 2,500-meter helicopter-supported diamond drill program to test the Golden Mask and King Tut target areas;

Initiation of Class 3 permitting for an expanded drill program on the Property for the 2024 field season; and,

Continuation of stakeholder engagement and community relations.

Table 26.1-1 – Proposed Phase 1 Exploration Budget

2023 PROPOSED PHASE 1 KING TUT BUDGET	2023 YK BGT (CDN\$)
ACCOUNT CATEGORY	Phase 1 Bgt
ACQUISITION COSTS	1,000
PROPERTY MAINTENANCE & FILING	-
ADVANCE ROYALTY PAYMENTS	-
COMMUNITY RELATIONS & ADVOCACY	5,000
OFFICE & ADMINISTRATION	3,905
PERMITTING	2,000
SUBTOTAL(G&A)	11,905
Drilling (meters)	-
DRILLING (All-In - \$170/m)	-
DRILLING (Assays - \$45/sample)(50% sampling)	-
GEOPHYSICS (DRONE-MAG & LIDAR)	135,000
GEOLOGY & PROJECT ADMIN	150,000
GEOLOGY (Assays - Rocks & Soils)	45,000
TECHNICAL CONSULTING & ENGINEERING (NI43-101)	10,000
CAMP COSTS & FIELD SUPPORT (Salaries & Supplies)	145,000
FIELD TRANSPORTATION (Helicopter/Fixed Wing/Truck)	250,000
TRAVEL (To and From project)	15,000
SUBTOTAL(Expl & Eng)	750,000
EXPENDITURE SUBTOTAL (G&A, Expl & Eng, Other, Cap)	761,905
5% Contingency on Expenditure Subtotal	38,095
EXPENDITURE TOTAL	800,000

Table 26.2-1 – Proposed Phase 2 Exploration Budget

2023 PROPOSED PHASE 2 KING TUT BUDGET	2023 YK BGT (CDN\$)
ACCOUNT CATEGORY	Phase 2 Bgt
ACQUISITION COSTS	1,000
PROPERTY MAINTENANCE & FILING	-
ADVANCE ROYALTY PAYMENTS	-
COMMUNITY RELATIONS & ADVOCACY	15,000
OFFICE & ADMINISTRATION	4,702
PERMITTING	4,000
SUBTOTAL(G&A)	24,702
Drilling (meters)	2,500
DRILLING (All-In - \$170/m)	425,000
DRILLING (Assays - \$45/sample)(50% sampling)	56,250
GEOPHYSICS (DRONE-MAG & LIDAR)	-
GEOLOGY & PROJECT ADMIN	250,000
GEOLOGY (Assays - Rocks & Soils)	-
TECHNICAL CONSULTING & ENGINEERING (NI43-101)	-
CAMP COSTS & FIELD SUPPORT (Salaries & Supplies)	200,000
FIELD TRANSPORTATION (Helicopter/Fixed Wing/Truck)	400,000
TRAVEL (To and From project)	25,000
SUBTOTAL(Expl & Eng)	1,356,250
EXPENDITURE SUBTOTAL (G&A, Expl & Eng, Other, Cap)	1,380,952
5% Contingency on Expenditure Subtotal	69,048
EXPENDITURE TOTAL	1,450,000

27 References

Abbott, J.G., Gordey, S.P., and Templeman-Kluit, D.J.

Setting of stratiform, sediment hosted lead-zinc deposits in Yukon and northeastern British Columbia, in Morin, J.A. ed., Mineral deposits of the northern Cordillera: Canadian Institute of Mining and Metallurgy, Special Volume 37, p. 1-18.

Arne, D. and McGarry, L.

2018 NI 43-101 Technical Report on the Macmillan Pass Zinc-Lead-Silver Project, Watson Lake and Mayo Districts, Yukon Territory, Canada. CSA Global Mining Industry Consultants Report Number R161.2018. Effective Date January 10, 2018

Berdahl, S. and Lewis, L.

2020 NI 43-101 Technical Report on the Rogue Gold Property, Yukon, Canada. Prepared for Skyledger Tech Corp. (to be renamed Snowline Gold Corp.). Prepared by J. Scott Berdahl, P.Geo., Supervised by Linda Lewis, P.Geo. Effective Date December 10, 2020.

Carne, R.C.

1991 Report on geological mapping and geochemical sampling on the Jet property; assessment report prepared for Falconbridge Limited and NDU Resources Ltd. by Archer, Cathro & Associates (1981) Limited; Assessment Report number 093003.

Carne, R.C. and Cathro, R.

Sedimentary exhalative (SEDEX) zinc-lead-silver deposits, northern Canadian Cordillera, Canadian Institute of Mining, Metallurgy and Petroleum Bulletin, Vol. 75, No. 840, 1982

Colpron, M., Israel, S., and Friend, M.

2016 Yukon Plutonic Suites. Yukon Geological Survey, Open File 2016-37, Map, 1:750,000-scale.

Cotes, M.E.,

1968 Atlas Exploration Limited Project Report 1968 Hess River Area. Assessment Report number 019033.

Cecile, M.P. and Abbott, J.G.

1989 Geology of the Niddery Lake Map Area (NTS 1050), Geological Survey of Canada, Open File 2076, 1:125 000-scale map.

Fireweed Metals Corp.

2023 Corporate Presentation available at www.fireweedmetals.com, <last accessed July 2023>.

Fraser, G.

1982 Geochemical and Geological Assessment Report Sun Claims. Assessment Report number 091367.

Friske, P.W.B., Hornbrook, E.H.W., Lynch, J.J., McCurdy, M.W., Gross, H., Galletta, A.C., Durham, C.C.,

National Geochemical Reconnaissance Stream, Sediment and Water Data, East Central Yukon (NTS 1050 and parts of 105P), Geological Survey of Canada, Open File 2364.

GeoYukon

Yukon Government website, www.GeoYukon.ca, information source for MILFILE and geological data. <a href="mailto: accessed July 2023>.

Gish, R.F.

1999 Report on Hand Trenching on the Jet Property, Archer, Cathro & Associates for Expatriate Resources Ltd, Mineral Assessment Report number 094012.

Goodfellow, W.D.

2007 Base Metal Metallogeny of the Selwyn Basin, Canada, in, Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, Goodfellow, W D (ed.), Geological Association of Canada, Mineral Deposits Division, Special Publication no. 5, 2007, pages 553-579.

Gordey, S. P. and Anderson, R. G.,

1993 Evolution of the Northern Cordilleran Miogeocline, Nahanni map area (105I), Yukon and Northwest Territories, Geological Survey of Canada Memoir 428. Ottawa, ON, Canada, Geological Survey of Canada, 214 pages.

Gregory, D.

Assessment report describing prospecting, mapping, and geochemical sampling at the Harlow property, Mayo Mining District; report prepared for Strategic Metals Ltd. by Archer, Cathro & Associates (1981) Limited. Report number 095610.

Hart, C.J.R.

2006 Tombstone Gold Belt-Intrusion-related gold, YGS Brochure 2006-6, Yukon Geological Survey/DIAND.
(https://ygsftp.gov.yk.ca/publications/brochures/ygs brochure 2006 6 tombstone gold belt.pdf)

2007 Mineral Deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods (pp. 95-112). Edition: Special publication. Geological Association of Canada Mineral Deposits Division. Editor

Wayne D. Goodfellow.

(https://www.researchgate.net/publication/277131625 Reduced Intrusion-related Gold Systems)

Hecla Mining Company

July 10, 2023 News Release announcing completion of acquisition of ATAC Resources and Restarts Casa Berardi. https://ir.hecla.com/News--Media/news-releases/news-details/2023/Hecla-Completes-Acquisition-of-ATAC-Resources-and-Restarts-Casa-Berardi/default.aspx

Lang, R.L., and Baker, T.

2001 Intrusion-related gold systems; the present level of understanding. Mineralium Deposita, 36 (6). Pp. 477-489.

Leuck, B. A,

1995 Geological and Geochemical Assessment Report, Weas 1-62 Claims, Assessment Report number 093420.

Leuck, B. A.,

1996 Geological and Geochemical Assessment Report, Weas 1-4, 25-40, 43-50 Claims, Assessment Report number 093407.

Mair, J.L, Hart, C.J.R, and Stephens, J.R.

2006 Deformation history of the northwestern Selwyn Basin, Yukon, Canada: Implications for orogen evolution and mid-Cretaceous magmatism. Geological Society of America Bulletin, March/April 2006, v. 118, no. 3-4, p. 304-323,

Magnall, J.M, Gleeson, S.A. and Paradis, S.

A new subseafloor placement model for the Macmillan Pass clastic-dominant Zn-Pb±Ba deposits, Yukon, Canada. Economic Geology (2020) Volume 115(5): pp. 953-959.

McCurdy, M.W., Friske, P.W.B., McNeil, R.J., Day, S.J.A. and Goodfellow, W.D.

2009 Regional Stream Sediment and Water Geochemical Data, eastern Yukon and western Northwest Territories (NTS 105I); GSC Open File 6271 / Yukon Geological Survey Open File 2009-26, 1 CD-ROM.

Morton, J.

Assessment report describing compilation and digitization of historical data on the Plata Property. Assessment Report number 097422.

Morton, J. and Burrell, H.

- 2013a Assessment report describing soil geochemical sampling at the Harlow Property. Report prepared for Strategic Metals Ltd. by Archer, Cathro & Associates (1981) Limited; Assessment Report number 096605.
- 2013b Assessment report describing soil geochemical sampling at the Harlot Property. Report prepared for Strategic Metals Ltd. by Archer, Cathro & Associates (1981) Limited; Assessment Report number 096604.

Murphy, D.C.

1997 Geology of the McQuesten River region, northern McQuesten and Mayo map area, Yukon Territory, (115P/14, 15, 16; 105M/13, 14): Exploration and Geological Services Division Yukon, Indian and Northern Affairs Canada, Bulletin 6, 122 p.

NAV Canada

- 2020 <u>www.navcanada.ca</u> *Canada Flight Supplement*. Effective 0901<u>Z</u> 16 July 2020 to 0901Z 10 September 2020.
- Onschuk, D., Miles, W.F., Saltus, R.W. and Hayward, N.
 - Alaska and Yukon Residual Total Magnetic Field compilation. Geological Survey of Canada, Open File 7862, scale 1:1 125 000. Publication date of 2022-02-28.

Parry, D. and Carne, R.C.

1990 Report on prospecting and geochemical sampling on the Jet property; prepared for NDU Resources Ltd. by Archer, Cathro & Associates (1981) Limited. Assessment Report number 092940.

Snowline Gold Corp.

- 2023a March 7, 2023, News Release for Snowline Gold Corp. last-accessed July 2023>.
- 2023b Corporate Presentation < last accessed July 2023>.
- 2023c March 28, 2023, News Release for Snowline Gold Corp. <last accessed July 2023>.
- 2023d June 6, 2023, News Release for Snowline Gold Corp. < last accessed July 2023>.

Statistics Canada Census

- 2021 Statistics Canada Census information for Ross River, Yukon Territory.

 https://www12.statcan.gc.ca/english/census01/products/standard/popdwell/Table-CSD-P.cfm?T=1&SR=1&S=1&O=A&PR=60)
- Thomas, R., Green, D., Abdkahar, A., and Livingstone, K.W.
 - 2012 Assessment report for the Carlin Gold Corporation Constantine Metal Resources Ltd. Joint-Venture (CCJV) Project on the Tut Property. Assessment Report number 095917.

28 Certificate of Qualified Person

CERTIFICATE OF AUTHOR

I, Heather Burrell, P.Geo., of Whitehorse, Yukon, do hereby certify that:

- I am currently employed as a Senior Geologist and Partner with Archer, Cathro & Associates (1981) Limited, with offices at 1100 Melville Street, Vancouver British Columbia, V6E 4A6 and 41 MacDonald Road, Whitehorse Yukon, Y1A 4R1.
- 2 This certificate applies to the technical report titled "Technical Report on the King Tut Project, NI 43-10, Yukon" with an effective date of July 15, 2023 (the "Technical Report") prepared for Onyx Gold Corp. ("the Issuer").
- I am a graduate of the University of British Columbia in Vancouver, Canada (Bachelor of Science in Earth and Ocean Sciences, 2006). I am a member in good standing of the Engineers and Geoscientists British Columbia (Reg. #34689). I have practiced my profession continuously since 2006 and have relevant experience in reduced intrusion-related gold systems.
- I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 5 I visited the King Tut Property by helicopter from Whitehorse, Yukon on June 15, 2023.
- 6 I am independent of the Issuer and related companies applying all of the tests in Section 1.5 of the NI 43-101.
- 7 I have had no prior involvement with the Property that is the subject of the Technical Report.
- 8 I have read the NI 43-101 Standards of Disclosure for Mineral Projects and the Technical Report has been prepared in compliance with NI 43-101 and Form 43-101F1.
- 9 As of the effective date of the Technical Report and the date of this certificate, to the best of my knowledge, information and belief, this Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Effective Date: July 15, 2023

Signing Date: August 1, 2023

Heather Burrell.

Heather Burrell, P.Geo.

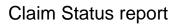
:

Appendix I: Detailed Claim Listing

2023-07-25 02:25 PM

Claim status	Claim name and number	Grant number	Claim expiry date	Claim owner	NTS Map	Grouping number	Notification Approval	Total Excess Credit
Active	Harlot 1	YC57040	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlot 2	YC57041	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlot 3	YC57042	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlot 4	YC57043	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlot 5	YC57044	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlot 6	YC57045	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlot 7	YC57046	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlot 8	YC57047	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlot 9	YC57048	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlot 10	YC57049	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlot 11	YC57050	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlot 12	YC57051	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 -	
Active	Harlot 13	YC57052	2028-03-06	Epica Gold Inc - 100%	105003		C1Q00517 Q2023_0043 -	
Active	Harlot 14	YC57053	2028-03-06	Epica Gold Inc - 100%	105O03		C1Q00517 Q2023_0043 -	
Active	Harlot 15	YC57054	2028-03-06	Epica Gold Inc - 100%	105003		C1Q00517 Q2023_0043 -	
Active	Harlot 16	YC57055	2028-03-06	Epica Gold Inc - 100%	105003		C1Q00517 Q2023_0043 -	
Active	Harlot 17	YC57056	2028-03-06	Epica Gold Inc - 100%	105003		C1Q00517 Q2023_0043 -	
Active	Harlot 18	YC57057	2028-03-06	Epica Gold Inc - 100%	105003		C1Q00517 Q2023_0043 -	
Active	Harlot 19	YC57058	2028-03-06	Epica Gold Inc - 100%	105003		C1Q00517 Q2023_0043 -	
Active	Harlot 20	YC57059	2028-03-06	Epica Gold Inc - 100%	105003		C1Q00517 Q2023_0043 -	
Active	Harlot 21	YC57060	2028-03-06	Epica Gold Inc - 100%	105003		C1Q00517 Q2023_0043 - C1Q00517	

Active	Harlot 22	YC57061	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				•		C1Q00517
Active	Harlot 23	YC57062	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	Harlot 24	YC57063	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	Harlot 25	YC57064	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	Harlot 26	YC57065	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	Harlot 27	YC57066	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	Harlot 28	YC57067	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	Harlot 29	YC57068	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	Harlot 30	YC57069	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	Harlot 31	YC57070	2028-03-06	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	Harlot 32	YC57071	2028-03-06	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517


Criteria(s) used for search: Regulation type = Quartz, Claim status = Active and pending, Claim name = Harlot.

Total claims selected: 32

This claim status report has been generated using the mining claims database online application https://apps.gov.yk.ca/ymcs/ . This site uses a copy of the mining recorder data and is refreshed nightly. Contact the specific district for more information on a claim.

Dawson.mining@yukon.ca 867-993-5343 Mayo.mining@yukon.ca 867-996-2256 Watson.mining@yukon.ca 867-536-7366 Whitehorse.mining@yukon.ca 867-667-3190

2023-07-25 02:25 PM

Claim status	Claim name and number	Grant number	Claim expiry date	Claim owner	NTS Map	Grouping number	Notification Approval	Total Excess Credit
Active	Harlow 1	YC57072	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 2	YC57073	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlow 3	YC57074	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 4	YC57075	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlow 5	YC57076	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlow 6	YC57077	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlow 7	YC57078	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	
Active	Harlow 8	YC57079	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 9	YC57080	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 10	YC57081	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 11	YC57082	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 12	YC57083	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 13	YC57084	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 14	YC57085	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 15	YC57086	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 16	YC57087	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 17	YC57088	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 18	YC57089	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 19	YC57090	2028-03-06	Epica Gold Inc - 100%	105O03		Q2023_0043 - C1Q00517	
Active	Harlow 20	YC57091	2028-03-06	Epica Gold Inc - 100%	105003		Q2023_0043 - C1Q00517	

Criteria(s) used for search: Regulation type = Quartz, Claim status = Active and pending, Claim name = Harlow.

Total claims selected: 20

This claim status report has been generated using the mining claims database online application https://apps.gov.yk.ca/ymcs/. This site uses a copy of the mining recorder data and is refreshed nightly. Contact the specific district for more information on a claim.

Dawson.mining@yukon.ca 867-993-5343 Mayo.mining@yukon.ca 867-996-2256 Watson.mining@yukon.ca 867-536-7366 Whitehorse.mining@yukon.ca 867-667-3190

2023-07-25 02:24 PM

Claim status	Claim name and number	Grant number	Claim expiry date	Claim owner	NTS Map	Grouping number	Notification Approval	Total Excess Credit
Active	TUT 1	YD00311	2026-10-26	Epica Gold Inc - 100%	105O03		Q2023_0043 -	
				-			C1Q00517	
Active	TUT 2	YD00312	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
							C1Q00517	
Active	TUT 3	YD00313	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
							C1Q00517	
Active	TUT 4	YD00314	2026-10-26	Epica Gold Inc - 100%	105O03		Q2023_0043 -	
							C1Q00517	
Active	TUT 5	YD00315	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
					_		C1Q00517	
Active	TUT 6	YD00316	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
							C1Q00517	
Active	TUT 7	YD00317	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
		1/200010			10-200		C1Q00517	
Active	TUT 8	YD00318	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
A .:	TUTO	\/D00010	2000 40 00	F : 0 !!! 4000/	405000		C1Q00517	
Active	TUT 9	YD00319	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
A - 1'	TUT 40	\/D00000	0000 40 00	Fried Oald Lag 4000/	405000		C1Q00517	
Active	TUT 10	YD00320	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
Active	TUT 11	YD00321	2026-10-26	Epica Gold Inc - 100%	105003		C1Q00517 Q2023 0043 -	
Active	10111	1000321	2020-10-20	Epica Gold inc - 100%	105003		C1Q00517	
Active	TUT 12	YD00322	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
ACTIVE	101 12	1000322	2020-10-20	Epica Gold IIIC - 100%	103003		C1Q00517	
Active	TUT 13	YD00323	2026-10-26	Epica Gold Inc - 100%	105O03		Q2023 0043 -	
ACTIVE	101 13	1200323	2020 10 20	Epica Gold IIIC - 10070	103003		C1Q00517	
Active	TUT 14	YD00324	2026-10-26	Epica Gold Inc - 100%	105O03		Q2023_0043 -	
TOUTO	10114	1200024	2020 10 20	Epida Gold IIIo 10070	100000		C1Q00517	
Active	TUT 15	YD00325	2026-10-26	Epica Gold Inc - 100%	105003		Q2023 0043 -	
	1.5	. 2 3 3 5 2 5	2020 10 20		100000		C1Q00517	
Active	TUT 16	YD00326	2026-10-26	Epica Gold Inc - 100%	105O03		Q2023_0043 -	
				'			C1Q00517	
Active	TUT 17	YD00327	2026-10-26	Epica Gold Inc - 100%	105O03		Q2023_0043 -	
							C1Q00517	
Active	TUT 18	YD00328	2026-10-26	Epica Gold Inc - 100%	105O03		Q2023_0043 -	
							C1Q00517	
Active	TUT 19	YD00329	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
							C1Q00517	
Active	TUT 20	YD00330	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
							C1Q00517	
Active	TUT 21	YD00331	2026-10-26	Epica Gold Inc - 100%	105003		Q2023_0043 -	
							C1Q00517	

Active	TUT 22	YD00332	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
A = 12	TUT 00	VDaaaaa	0000 40 00	Faire Oaldles 4000/	405000	C1Q00517
Active	TUT 23	YD00333	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 24	YD00334	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 24	1000334	2020-10-20	Epica Gold IIIC - 100%	103003	C1Q00517
Active	TUT 25	YD00335	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7.101.10	10.20	. 200000	2020 10 20	_p.sa celaeee,e	.00000	C1Q00517
Active	TUT 26	YD00336	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 27	YD00337	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 28	YD00338	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 29	YD00339	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 30	YD00340	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 31	YD00341	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				,		C1Q00517
Active	TUT 32	YD00342	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
		1 - 3 - 3 - 3			133333	C1Q00517
Active	TUT 33	YD00343	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
7.0	10.00	12000.0	1020 10 20			C1Q00517
Active	TUT 34	YD00344	2026-10-26	Epica Gold Inc - 100%	105003	Q2023 0043 -
7101170	10.01	1200011	2020 10 20	Zpiod Gold ino 10070	100000	C1Q00517
Active	TUT 35	YD00345	2026-10-26	Epica Gold Inc - 100%	105003	Q2023 0043 -
7101170	10100	1200040	2020 10 20	Epida Gold IIIo 10070	100000	C1Q00517
Active	TUT 36	YD00346	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	10100	1200040	2020 10 20	Epida Gold IIIo 10070	100000	C1Q00517
Active	TUT 37	YD00347	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	10137	1200547	2020 10 20	Epica Gold IIIC - 10070	103003	C1Q00517
Active	TUT 38	YD00348	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023 0043 -
Active	10130	1200540	2020 10 20	Epica Gold IIIC - 10070	103003	C1Q00517
Active	TUT 39	YD00349	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	10139	1200349	2020-10-20	Epica Gold IIIC - 10076	103003	C1Q00517
Active	TUT 40	YD00350	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	10140	1200330	2020-10-20	Epica Gold IIIC - 10076	103003	C1Q00517
Active	TUT 41	YD00351	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	10141	1000331	2020-10-20	Lpica Gold IIIC - 100 /6	103003	C1Q00517
Active	TUT 42	YD00352	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 42	1000332	2020-10-20	Lpica Gold IIIC - 100 /6	103003	C1Q00517
Active	TUT 43	YD00353	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Veline	10143	1000333	2020-10-20	Lpica Goid inc - 100%	103003	C1Q00517
Active	TUT 44	YD00354	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
ACTIVE	101 44	1000354	2020-10-20	Lpica Goid IIIC - 100/6	100000	C1Q00517
Active	TUT 45	YD00355	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
ACTIVE	10140	1000303	2020-10-20	Lpica Goid IIIC - 100/6	100000	C1Q00517
Active	TUT 46	YD00356	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	10140	1 000350	2020-10-20	Lpica Goid IIIC - 100%	103003	C1Q00517
						CIQUOII

Active	TUT 47	YD00357	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
A = 15	TUT 40	VDOODEO	2000 40 00	F 0-1-11 4000/	105000	
Active	TUT 48	YD00358	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
A (:	TUT 10	\/B00050	2000 10 00	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 49	YD00359	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 50	YD00360	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 51	YD00361	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 52	YD00362	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				'		C1Q00517
Active	TUT 53	YD00363	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7 101170	1.0.00	. 200000	2020 10 20	_p.oa	.55555	C1Q00517
Active	TUT 54	YD00364	2026-10-26	Epica Gold Inc - 100%	105003	Q2023 0043 -
Active	10134	1000304	2020-10-20	Epica Gold IIIC 10070	103003	C1Q00517
Active	TUT 55	YD00365	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 55	1000303	2026-10-26	Epica Gold Inc - 100%	105005	
A - 12	TUT 50	VDooooo	2000 40 00	F 0-1-11 4000/	105000	C1Q00517
Active	TUT 56	YD00366	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
		115				C1Q00517
Active	TUT 57	YD00367	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 58	YD00368	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 59	YD00369	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 60	YD00370	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023 0043 -
				,		C1Q00517
Active	TUT 61	YD00371	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7101170	10101	1200011	2020 10 20	Epica Gold in 6 10070	100000	C1Q00517
Active	TUT 62	YD00372	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	10102	1500372	2020-10-20	Epica Gold IIIC 10070	103003	C1Q00517
Active	TUT 63	YD00373	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 63	1000373	2026-10-26	Epica Gold Inc - 100%	105005	
• • •	TI IT 04	\/B00074	2000 10 00	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 64	YD00374	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
		1.00				C1Q00517
Active	TUT 65	YD00375	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 66	YD00376	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 67	YD00377	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 68	YD00378	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		12000.0			133333	C1Q00517
Active	TUT 69	YD00379	2026-10-26	Epica Gold Inc - 100%	105003	Q2023 0043 -
7101170	10.00	1500010	2020 10 20	Epica Gold in 6 10070	100000	C1Q00517
Active	TUT 70	YD00380	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
ACUVE	10170	1200300	2020-10-20	Lpica Gold IIIC - 100/6	100000	C1Q00517
A otivo	TUT 71	YD00381	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	10171	1 00030 1	2020-10-20	Epica Gold inc - 100%	105003	
						C1Q00517

Active	TUT 72	YD00382	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
A =4::=	TUT 73	VD00000	2020 40 20	Faire Caldina 4000/	105O03	C1Q00517 Q2023 0043 -
Active	101 73	YD00383	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 74	YD00384	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	10174	1200304	2020-10-20	Lpica Gold IIIC - 10076	103003	C1Q00517
Active	TUT 75	YD00385	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023 0043 -
7101110	101.10	120000	2020 10 20	Epida Gold III 10070	100000	C1Q00517
Active	TUT 76	YD00386	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				,		C1Q00517
Active	TUT 77	YD00387	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 78	YD00388	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 79	YD00389	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 80	YD00390	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
A - 1'	TUT 04	V/D00004	0000 40 00	Faire Oald he door	405000	C1Q00517
Active	TUT 81	YD00391	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	TUT 82	YD00392	2026-10-26	Epica Gold Inc - 100%	105O03	C1Q00517 Q2023 0043 -
Active	101 62	1000392	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 83	YD00393	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 03	1000393	2020-10-20	Lpica Gold IIIC - 100%	103003	C1Q00517
Active	TUT 84	YD00394	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023 0043 -
7101170	10104	1200004	2020 10 20	Epida Gold IIIo 10070	100000	C1Q00517
Active	TUT 85	YD00395	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023 0043 -
7.00.70	10.00	. 2 3 3 3 3	2020 10 20	_p.oa	100000	C1Q00517
Active	TUT 86	YD00396	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 87	YD00397	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 88	YD00398	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 89	YD00399	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		1/5 - 2 - 4 - 2				C1Q00517
Active	TUT 90	YD00400	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
A =4: =	TUT 91	VD00404	2000 40 00	Fried Cold Inc. 4000/	405000	C1Q00517
Active	10191	YD00401	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 92	YD00402	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023 0043 -
Active	101 92	1000402	2020-10-20	Lpica Gold IIIC - 100%	103003	C1Q00517
Active	TUT 93	YD00403	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7101170	101 30	1200400	2020 10 20	Epida Gold IIIo 10070	100000	C1Q00517
Active	TUT 94	YD00404	2026-10-26	Epica Gold Inc - 100%	105003	Q2023 0043 -
		1 - 3 - 3 - 3			133333	C1Q00517
Active	TUT 95	YD00405	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 96	YD00406	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517

Active	TUT 97	YD00407	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
A =4:	TUT 98	VD00400	2020 40 20	Fried Cald Inc. 4000/	105003	Q2023 0043 -
Active	101 98	YD00408	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 99	YD00409	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 99	1000409	2020-10-20	Lpica Gold IIIC - 100%	103003	C1Q00517
Active	TUT 100	YD00410	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023 0043 -
Active	101 100	1000410	2020-10-20	Lpica Gold IIIC - 10076	103003	C1Q00517
Active	TUT 101	YD00411	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 101	1000411	2020-10-20	Lpica Gold IIIC - 100%	103003	C1Q00517
Active	TUT 102	YD00412	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 102	1000412	2020-10-20	Lpica Gold IIIC - 100%	103003	C1Q00517
Active	TUT 103	YD00413	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 103	1000413	2026-10-26	Epica Gold Inc - 100%	105005	C1Q00517
Active	TUT 104	YD00414	2026-10-26	Epica Gold Inc - 100%	105003	Q2023 0043 -
Active	101 104	1000414	2026-10-26	Epica Gold Inc - 100%	105003	C1Q00517
A -4:	TUT 405	VD00445	2020 40 20	Fried Cald Inc. 4000/	405000	
Active	TUT 105	YD00415	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
	TUT 100	\/D00440	2000 10 00	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 106	YD00416	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
		1.5				C1Q00517
Active	TUT 107	YD00417	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
					_	C1Q00517
Active	TUT 108	YD00418	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 109	YD00419	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 110	YD00420	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 111	YD00421	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 112	YD00422	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 113	YD00423	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 114	YD00424	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 115	YD00425	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				'		C1Q00517
Active	TUT 116	YD00426	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
				,		C1Q00517
Active	TUT 117	YD00427	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023 0043 -
						C1Q00517
Active	TUT 118	YD00428	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
	1		==== == ==	,	12222	C1Q00517
Active	TUT 119	YD00429	2026-10-26	Epica Gold Inc - 100%	105003	Q2023 0043 -
	1	1 = 33 .23				C1Q00517
Active	TUT 120	YD00430	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
5	101.120	1.200.00	2020 10 20		1.00000	C1Q00517
Active	TUT 121	YD00431	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 -
, 101140	101121	1200-01	2020 10 20		100000	C1Q00517
						U I QUUU I I

Active	TUT 122	YD00432	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 123	YD00433	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 124	YD00434	2026-10-26	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 125	YD00435	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 126	YD00436	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	TUT 127	YD00437	2026-10-26	Epica Gold Inc - 100%	105O03	C1Q00517 Q2023_0043 - C1Q00517
Active	TUT 128	YD00438	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 129	YD00439	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 130	YD00440	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 131	YD00441	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 132	YD00442	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 133	YD00443	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 134	YD00444	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 135	YD00445	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 136	YD00446	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 137	YD00447	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 138	YD00448	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 139	YD00449	2026-10-26	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 549	YE34472	2025-09-02	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 550	YE34473	2025-09-02	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 551	YE34474	2025-09-02	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 552	YE34475	2025-09-02	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 553	YE34476	2025-09-02	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 554	YE34477	2025-09-02	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 555	YE34478	2025-09-02	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517

Active	TUT 556	YE34479	2025-09-02	Epica Gold Inc - 100%	105003	Q2023_0043 -
A -1'	TUT CC7	VE04400	2005 00 00	Faire Oaldles 4000/	405000	C1Q00517
Active	TUT 557	YE34480	2025-09-02	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 558	YE34481	2025-09-02	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 336	1 L 3440 1	2023-09-02	Epica Gold IIIC - 100 //	103003	C1Q00517
Active	TUT 559	YE34482	2025-09-02	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101110	101000	1201162	2020 00 02	Epica Cola IIIo 10070	100000	C1Q00517
Active	TUT 140	YE35810	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
						C1Q00517
Active	TUT 141	YE35811	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 142	YE35812	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 143	YE35813	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 144	YE35814	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 145	YE35815	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
					_	C1Q00517
Active	TUT 146	YE35816	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		\/====				C1Q00517
Active	TUT 147	YE35817	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
• • •	TUT 440	\/F05040	2005.04.04	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 148	YE35818	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
A =4: =	TUT 440	VE25040	2025 04 04	Faire Caldina 4000/	405000	C1Q00517
Active	TUT 149	YE35819	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 150	YE35820	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 150	1 = 35620	2025-04-04	Epica Gold Inc - 100%	105003	C1Q00517
Active	TUT 151	YE35821	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 131	1233021	2025-04-04	Lpica Gold IIIC - 10076	103003	C1Q00517
Active	TUT 152	YE35822	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
7101170	101 102	1200022	2020 04 04	Epida Gold IIIo 10070	100000	C1Q00517
Active	TUT 153	YE35823	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7.01.70		. 200020	2020 0 . 0 .	_p.oa		C1Q00517
Active	TUT 154	YE35824	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
					100000	C1Q00517
Active	TUT 155	YE35825	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				'		C1Q00517
Active	TUT 156	YE35826	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 157	YE35827	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 158	YE35828	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 159	YE35829	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 160	YE35830	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517

Active	TUT 161	YE35831	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
A .:	TUT 400	\/505000	2005.04.04	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 162	YE35832	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 163	YE35833	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 103	1233033	2023 04 04	Epica Gold IIIC - 10070	103003	C1Q00517
Active	TUT 164	YE35834	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
		. =====				C1Q00517
Active	TUT 165	YE35835	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 166	YE35836	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 167	YE35837	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 168	YE35838	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				'		C1Q00517
Active	TUT 169	YE35839	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
	101 100				133333	C1Q00517
Active	TUT 170	YE35840	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101.170	1200010	2020 0 . 0 .	Epica Gold in 6 10070	100000	C1Q00517
Active	TUT 171	YE35841	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 171	1233641	2025-04-04	Epica Gold IIIC - 10078	103003	C1Q00517
Active	TUT 172	YE35842	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 1/2	1 E 3 3 6 4 2	2025-04-04	Epica Gold Inc - 100%	105005	
A - 1	TUT 470	\/E050.40	0005.04.04	F 0-1-11 4000/	105000	C1Q00517
Active	TUT 173	YE35843	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 174	YE35844	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 175	YE35845	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 176	YE35846	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 177	YE35847	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 178	YE35848	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
	101111	1			133333	C1Q00517
Active	TUT 179	YE35849	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101.170	1200010	2020 0 . 0 .	Epica Gold in 6 10070	100000	C1Q00517
Active	TUT 180	YE35850	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 100	1233030	2023 04 04	Epica Gold IIIC 10070	103003	C1Q00517
Active	TUT 181	YE35851	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 101	1233631	2023-04-04	Lpica Gold Inc - 100%	103003	C1Q00517
Active	TUT 182	YE35852	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 162	1 E 3 3 6 3 2	2025-04-04	Epica Gold Inc - 100%	105005	C1Q00517
A ativo	TUT 402	VESESS	2025 04 04	Fries Cold Inc. 1000/	105003	
Active	TUT 183	YE35853	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
• • •	TUT 404	\/E05054	0005.04.07	F : 0 !!! 4000'	105000	C1Q00517
Active	TUT 184	YE35854	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
					_	C1Q00517
Active	TUT 185	YE35855	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517

Active	TUT 186	YE35856	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
A - 1'	TUT 407	\/E05057	2005.04.04	Fo.'s a Oald Is a 4000/	405000	
Active	TUT 187	YE35857	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
A - 1	TUT 400	\/E05050	2005.04.04	Faire Oaldles 4000/	405000	C1Q00517
Active	TUT 188	YE35858	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
					_	C1Q00517
Active	TUT 189	YE35859	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 190	YE35860	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 191	YE35861	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				•		C1Q00517
Active	TUT 192	YE35862	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7 101170		. 200002	2020 0 . 0 .	_p.sa	1.55555	C1Q00517
Active	TUT 193	YE35863	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
7101170	101 100	1200000	2020 04 04	Epica Gold inc. 10070	100000	C1Q00517
Active	TUT 194	YE35864	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
Active	101 194	1233804	2023-04-04	Lpica Gold inc - 100 %	103003	C1Q00517
A -4:	TUT 195	VESESCE	2025 04 04	Fried Cald Inc. 4000/	405000	
Active	101 195	YE35865	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 196	YE35866	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 197	YE35867	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 198	YE35868	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 199	YE35869	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
				'		C1Q00517
Active	TUT 200	YE35870	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
		1			100000	C1Q00517
Active	TUT 201	YE35871	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101201	1200071	2020 04 04	Epica Gold inc. 10070	100000	C1Q00517
Active	TUT 202	YE35872	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 202	1233672	2023-04-04	Lpica Gold inc - 100 %	103003	C1Q00517
A - 15	TUT 203	\/F05070	2005.04.04	Fo.' O.H.H 4000/	405000	
Active	101 203	YE35873	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		\/====-/			10-000	C1Q00517
Active	TUT 204	YE35874	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 205	YE35875	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 206	YE35876	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 207	YE35877	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
	-					C1Q00517
Active	TUT 208	YE35878	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
	1.0.200	-255.5	=======		.55555	C1Q00517
Active	TUT 209	YE35879	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7.00170	101200	1233073	2020 04 04	Epida Gold IIIC - 10070	103003	C1Q00517
Active	TUT 210	YE35880	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101210	1 = 33000	2025-04-04	Lpica Gold inc - 100%	103003	
						C1Q00517

Active	TUT 211	YE35881	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 212	YE35882	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 213	YE35883	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 214	YE35884	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 215	YE35885	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	TUT 216	YE35886	2025-04-04	Epica Gold Inc - 100%	105O03	C1Q00517 Q2023_0043 - C1Q00517
Active	TUT 217	YE35887	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 218	YE35888	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 219	YE35889	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 220	YE35890	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 221	YE35891	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 222	YE35892	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 223	YE35893	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 224	YE35894	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 225	YE35895	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 226	YE35896	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 227	YE35897	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 228	YE35898	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 229	YE35899	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 230	YE35900	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 231	YE35901	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 232	YE35902	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 233	YE35903	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 234	YE35904	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Active	TUT 235	YE35905	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517

Active	TUT 236	YE35906	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
A - 1'	TUT 007	VE05007	2005.04.04	Faire Oaldles 4000/	405000	C1Q00517
Active	TUT 237	YE35907	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 238	YE35908	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 230	1233900	2023-04-04	Epica Gold IIIC - 100 //	103003	C1Q00517
Active	TUT 239	YE35909	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7101110	101200	1.20000	2020 01 01	Epica Cola IIIo 10070	100000	C1Q00517
Active	TUT 240	YE35910	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
				·		C1Q00517
Active	TUT 241	YE35911	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 242	YE35912	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 243	YE35913	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 244	YE35914	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 245	YE35915	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
					_	C1Q00517
Active	TUT 246	YE35916	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		\/====			107000	C1Q00517
Active	TUT 247	YE35917	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
	TUT 040	\/505040	2005.04.04	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 248	YE35918	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
A =4: =	TUT 249	VE25040	2025-04-04	Fries Cald Inc. 4000/	105003	C1Q00517 Q2023 0043 -
Active	101 249	YE35919	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 250	YE35920	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 230	1 = 35920	2025-04-04	Epica Gold Inc - 100%	105005	C1Q00517
Active	TUT 251	YE35921	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 231	1 L 3 3 9 2 1	2023-04-04	Lpica Gold Inc - 100%	103003	C1Q00517
Active	TUT 252	YE35922	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
7101170	101 202	1200022	2020 04 04	Epida Gold IIIo 10070	100000	C1Q00517
Active	TUT 253	YE35923	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7.04.70	10.200	. 200020	2020 0 . 0 .	_p.oa	100000	C1Q00517
Active	TUT 254	YE35924	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				,		C1Q00517
Active	TUT 255	YE35925	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				'		C1Q00517
Active	TUT 256	YE35926	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 257	YE35927	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 258	YE35928	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 259	YE35929	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 260	YE35930	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517

Active	TUT 286	YE35956	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
A .:	TI IT COT	\/505057	2005.04.04	F : 0 !!! 4000/	105000	
Active	TUT 287	YE35957	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 288	YE35958	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 289	YE35959	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 290	YE35960	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 291	YE35961	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				F		C1Q00517
Active	TUT 312	YE35982	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7101170	101012	1200302	2020 04 04	Epica Gold inc 10070	100000	C1Q00517
Active	TUT 313	YE35983	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
ACTIVE	101313	1233965	2025-04-04	Epica Gold IIIC - 10078	103003	C1Q00517
A ativo	TUT 24.4	VE35084	2025 04 04	Fries Cold Inc. 1000/	105002	
Active	TUT 314	YE35984	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		\/======			107000	C1Q00517
Active	TUT 315	YE35985	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 316	YE35986	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 317	YE35987	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				·		C1Q00517
Active	TUT 318	YE35988	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
				'		C1Q00517
Active	TUT 319	YE35989	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
, 101110	10.0.0	. 200000	2020 0 . 0 .	_p.oa	10000	C1Q00517
Active	TUT 320	YE35990	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 320	1233330	2023 04 04	Epica Gold IIIC 10070	103003	C1Q00517
Active	TUT 321	YE35991	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 321	1 = 33991	2025-04-04	Epica Gold Inc - 100%	105005	C1Q00517
Λ - 1	TUT OOO	VE05000	2005.04.04	F 0-1-11 4000/	405000	
Active	TUT 322	YE35992	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 323	YE35993	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 324	YE35994	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 325	YE35995	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 326	YE35996	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
				F		C1Q00517
Active	TUT 327	YE35997	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101021	1200007	2020 0 1 0 1	Epica Gold in 6 10070	100000	C1Q00517
Active	TUT 328	YE35998	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
ACTIVE	101 320	1233990	2025-04-04	Epica Gold IIIC - 10078	103003	C1Q00517
Active	TUT 329	YE35999	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 329	1 = 35999	2025-04-04	Epica Gold inc - 100%	105003	Q2023_0043 - C1Q00517
A - 1'	TUT 000	\/F00000	2005.04.04	Faire Oald has 4000'	405000	
Active	TUT 330	YE36000	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517

Active	TUT 331	YE36001	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Λ -4:	TUT 332	VE20000	2025 04 04	Fries Cald Inc. 4000/	105003	Q2023 0043 -
Active	101 332	YE36002	2025-04-04	Epica Gold Inc - 100%	105003	
A -4:	TUT 000	VE20002	2025 04 04	Fried Cald Inc. 4000/	105000	C1Q00517
Active	TUT 333	YE36003	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		1/500001			10000	C1Q00517
Active	TUT 334	YE36004	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 335	YE36005	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 336	YE36006	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 337	YE36007	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				,		C1Q00517
Active	TUT 338	YE36008	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
7101170	101000	120000	2020 0 1 0 1	Zpica Gold inc 10070	100000	C1Q00517
Active	TUT 339	YE36009	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
Active	101 339	1230009	2023-04-04	Epica Gold IIIC - 10078	103003	C1Q00517
Active	TUT 340	YE36010	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 340	1 = 300 10	2025-04-04	Epica Gold Inc - 100%	105003	
A .:	TUTOM	VE00044	2005.04.04	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 341	YE36011	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		1.45				C1Q00517
Active	TUT 342	YE36012	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 343	YE36013	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 344	YE36014	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 345	YE36015	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				'		C1Q00517
Active	TUT 346	YE36016	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7.04.70	10.0.0	. 2000 . 0		_p.oa Go.aooo,o	1.00000	C1Q00517
Active	TUT 347	YE36017	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 547	1230017	2023 04 04	Epica Gold IIIc - 10070	103003	C1Q00517
Active	TUT 348	YE36018	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 346	1 = 300 10	2025-04-04	Epica Gold Inc - 100%	105005	
A = (**	TUT 040	VE00040	2005.04.04	Frie Oaldle 4000/	405000	C1Q00517
Active	TUT 349	YE36019	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		\/======			10000	C1Q00517
Active	TUT 350	YE36020	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 351	YE36021	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 352	YE36022	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				-		C1Q00517
Active	TUT 353	YE36023	2027-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
				,		C1Q00517
Active	TUT 354	YE36024	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
5	101001	1.20002.	2027 0.04		1.00000	C1Q00517
Active	TUT 355	YE36025	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
ACUVE	101303	1230023	2021-04-04	Lpica Gold IIIC - 10070	100000	C1Q00517
L						C1Q00317

Active	TUT 356	YE36026	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 357	YE36027	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 358	YE36028	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 356	1 = 30020	2027-04-04	Epica Gold Inc - 100%	105003	C1Q00517
Active	TUT 359	YE36029	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
Active	101 339	1230029	2027-04-04	Epica Gold IIIC - 100%	103003	C1Q00517
Active	TUT 360	YE36030	2027-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
7101110	101000	120000	2027 0101	Zpiod Gold IIIo 10070	100000	C1Q00517
Active	TUT 361	YE36031	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				,		C1Q00517
Active	TUT 362	YE36032	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				'		C1Q00517
Active	TUT 363	YE36033	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 364	YE36034	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				'		C1Q00517
Active	TUT 365	YE36035	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				,		C1Q00517
Active	TUT 366	YE36036	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7101170	10.000	1200000	2027 0101	Zpica Gold illo 10070	100000	C1Q00517
Active	TUT 367	YE36037	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
7101170	10.00.	1200001	2027 0101	Zpica Gold illo 10070	100000	C1Q00517
Active	TUT 368	YE36038	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
7101170	101 000	1200000	2027 04 04	Epida Gold IIIc 10070	100000	C1Q00517
Active	TUT 369	YE36039	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101000	1.200000	2027 0101	Epida Gold IIIe 10070	100000	C1Q00517
Active	TUT 370	YE36040	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7101170	10.0.0	1200010	2027 0101	Zpica Gold illo 10070	100000	C1Q00517
Active	TUT 371	YE36041	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
7101170	1010/1	1200041	2027 04 04	Epica Gold IIIe 10070	100000	C1Q00517
Active	TUT 372	YE36042	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101072	1200042	2027 04 04	Epica Gold IIIe 10070	100000	C1Q00517
Active	TUT 373	YE36043	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 373	1230043	2027 04 04	Lpica Gold Inc - 10070	103003	C1Q00517
Active	TUT 374	YE36044	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
7101170	101074	1200044	2020 04 04	Epiod Cold IIIc 10070	100000	C1Q00517
Active	TUT 375	YE36045	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101070	1200040	2020 04 04	Epiod Cold IIIc 10070	100000	C1Q00517
Active	TUT 376	YE36046	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101070	1200040	2020 04 04	Epida Gold IIIc 10070	100000	C1Q00517
Active	TUT 377	YE36047	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
. 101110	13.377	1200077	2020 07 07		1.00000	C1Q00517
Active	TUT 378	YE36048	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
	1.0.0.0	. 2000 . 0				C1Q00517
Active	TUT 379	YE36049	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
	1.5.5.5	550 10		_p.cs. cc.s.mo 10070	.55555	C1Q00517
Active	TUT 380	YE36050	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
, 101110	101000	120000	2020 04 04	25100 Cold 1110 10070	133333	C1Q00517
						G1Q00317

Active	TUT 381	YE36051	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 382	YE36052	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 383	YE36053	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 384	YE36054	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 385	YE36055	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 386	YE36056	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 387	YE36057	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 388	YE36058	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 389	YE36059	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 390	YE36060	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 391	YE36061	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 392	YE36062	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 393	YE36063	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 394	YE36064	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 395	YE36065	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 396	YE36066	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 397	YE36067	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 398	YE36068	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 399	YE36069	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 400	YE36070	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 401	YE36071	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 402	YE36072	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 403	YE36073	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 404	YE36074	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 405	YE36075	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517

Active	TUT 406	YE36076	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
A .:	TUT 407	\/500077	2005.04.04	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 407	YE36077	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
Active	TUT 408	YE36078	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 400	1230070	2023-04-04	Epica Gold IIIC - 100%	103003	C1Q00517
Active	TUT 409	YE36079	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7.00.70			2020 0 . 0 .		.0000	C1Q00517
Active	TUT 410	YE36080	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 411	YE36081	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 412	YE36082	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 413	YE36083	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				'		C1Q00517
Active	TUT 414	YE36084	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7 101170			2020 0 . 0 .	_p.oa	.0000	C1Q00517
Active	TUT 415	YE36085	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101 410	1200000	2020 04 04	Epica Gold inc 10070	100000	C1Q00517
Active	TUT 416	YE36086	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101410	1 230000	2023-04-04	Epica Gold IIIC - 100 %	103003	C1Q00517
A ative	TUT 417	VF26097	2025 04 04	Fries Cold Inc. 1000/	105003	
Active	101417	YE36087	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
A .:	TUT 440	\/500000	2027.04.04	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 418	YE36088	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 419	YE36089	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 420	YE36090	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 421	YE36091	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 422	YE36092	2027-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
				'		C1Q00517
Active	TUT 423	YE36093	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
					133333	C1Q00517
Active	TUT 424	YE36094	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7101170	101.121	1200001	2027 01 01	Epica Gold in 6 10070	100000	C1Q00517
Active	TUT 425	YE36095	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 425	1230033	2027-04-04	Epica Gold IIIC 10070	105005	C1Q00517
Active	TUT 426	YE36096	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 420	1230090	2027-04-04	Lpica Gold Inc - 100%	103003	C1Q00517
Active	TUT 427	YE36097	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 427	1 = 36097	2025-04-04	Epica Gold Inc - 100%	105005	C1Q00517
A -41:	TUT 400	VF20000	2025 04 04	Fried Cald Inc. 4000/	405000	
Active	TUT 428	YE36098	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
A -41:	TUT 400	VEGGGGG	0005 04 04	Faire Cald has 1000/	405000	
Active	TUT 429	YE36099	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
		1.5		 		C1Q00517
Active	TUT 430	YE36100	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
1						C1Q00517

				1		
Active	TUT 431	YE36101	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
A - 1'	TUT 400	VE00400	2005.04.04	Frie Oaldle 4000/	405000	
Active	TUT 432	YE36102	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		1/500/00			10000	C1Q00517
Active	TUT 433	YE36103	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 434	YE36104	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 435	YE36105	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 436	YE36106	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				'		C1Q00517
Active	TUT 437	YE36107	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7 101170		. 200.0.	2020 0 . 0 .	_p.oa Go.aooo,o	1.00000	C1Q00517
Active	TUT 438	YE36108	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
Active	101 400	1230100	2023 04 04	Epica Gold IIIc - 10070	103003	C1Q00517
Active	TUT 439	YE36109	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
Active	101 439	1 = 30 109	2025-04-04	Epica Gold Inc - 100%	105005	
A - 12	TUT 440	VE00440	2005.04.04	Frie Oaldle 4000/	405000	C1Q00517
Active	TUT 440	YE36110	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		1.4				C1Q00517
Active	TUT 441	YE36111	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 442	YE36112	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 443	YE36113	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 444	YE36114	2027-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
				'		C1Q00517
Active	TUT 445	YE36115	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
					100000	C1Q00517
Active	TUT 446	YE36116	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101 440	1200110	2027 04 04	Epida Gold III 10070	100000	C1Q00517
Active	TUT 447	YE36117	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 447	1230117	2027-04-04	Epica Gold IIIC - 100 %	103003	C1Q00517
A -4:	TUT 448	VE20440	2027.04.04	Fries Cald Inc. 4000/	105000	
Active	101 448	YE36118	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		VE22442			10000	C1Q00517
Active	TUT 449	YE36119	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 450	YE36120	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 451	YE36121	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 452	YE36122	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				'		C1Q00517
Active	TUT 453	YE36123	2025-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
7.04.70		1.200.20		_p.oa Go.aooo,o	1.00000	C1Q00517
Active	TUT 454	YE36124	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7.00170	101707	1230124	2023 07 04	Lpica Gold IIIC - 10070	100000	C1Q00517
Active	TUT 455	YE36125	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 400	1 E 30 1 2 3	2025-04-04	Epica Gold Inc - 100%	103003	
						C1Q00517

A						
Active	TUT 456	YE36126	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
A	TUT 457	\/F00407	2005.04.04	F : 0 !!! 1000/	105000	C1Q00517
Active	TUT 457	YE36127	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
A - 1'	TUT 450	VE00400	2005.04.04	Fried Oaldles 4000/	405000	C1Q00517
Active	TUT 458	YE36128	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 459	YE36129	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 460	YE36130	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 461	YE36131	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 462	YE36132	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				'		C1Q00517
Active	TUT 463	YE36133	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
	101					C1Q00517
Active	TUT 464	YE36134	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7101170	101 404	1200104	2027 04 04	Epida Gold IIIO 10070	100000	C1Q00517
Active	TUT 465	YE36135	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 403	1230133	2027-04-04	Lpica Gold IIIC - 100 /6	103003	C1Q00517
Λ -4:	TUT 466	YE36136	2025 04 04	Epica Gold Inc - 100%	105003	Q2023 0043 -
Active	101 466	YE30130	2025-04-04	Epica Gold Inc - 100%	105003	
		\/===			107000	C1Q00517
Active	TUT 467	YE36137	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 468	YE36138	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 469	YE36139	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 470	YE36140	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 471	YE36141	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				,		C1Q00517
Active	TUT 472	YE36142	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7.101.10		1 200	2020 0 . 0 .	_p.ca co.acco/c		C1Q00517
Active	TUT 473	YE36143	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 473	1230143	2027 04 04	Lpica dola inc - 10070	103003	C1Q00517
Active	TUT 474	YE36144	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 474	1 = 30 144	2027-04-04	Epica Gold IIIC - 100%	105005	
A - (*	TUT 475	VE004.45	2007.04.04	Frie Oaldle 4000/	405000	C1Q00517
Active	TUT 475	YE36145	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		1/=22442			107000	C1Q00517
Active	TUT 476	YE36146	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		=				C1Q00517
Active	TUT 477	YE36147	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 478	YE36148	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 479	YE36149	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				,		C1Q00517
Active	TUT 480	YE36150	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		1	1		1	C1Q00517

Active	TUT 481	YE36151	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
Λ -4:	TUT 400	VE20452	2025 04 04	Fried Cald Inc. 4000/	405000	
Active	TUT 482	YE36152	2025-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
•	TI IT 100	\/500450	2027.04.04	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 483	YE36153	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 484	YE36154	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 485	YE36155	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 486	YE36156	2025-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 487	YE36157	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				,		C1Q00517
Active	TUT 488	YE36158	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
7101170	101 100	1200100	202. 0.0.	Epica Gold inc 10070	100000	C1Q00517
Active	TUT 489	YE36159	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 409	1230139	2027-04-04	Epica Gold IIIC - 10078	103003	C1Q00517
Active	TUT 490	YE36160	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 490	1 = 30 100	2027-04-04	Epica Gold inc - 100%	105003	
• • •	TI IT 404	\/F00404	2027.04.04	F : 0 !!! 4000/	105000	C1Q00517
Active	TUT 491	YE36161	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		1.5				C1Q00517
Active	TUT 492	YE36162	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 493	YE36163	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 494	YE36164	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 495	YE36165	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				'		C1Q00517
Active	TUT 496	YE36166	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
7.04.70		1200.00	202. 0.0.	_p.sa co.aooo,s	1.00000	C1Q00517
Active	TUT 497	YE36167	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 437	1230107	2027-04-04	Epica Gold IIIc - 10070	103003	C1Q00517
Active	TUT 498	YE36168	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 496	1 = 30 100	2027-04-04	Epica Gold Inc - 100%	103003	C1Q00517
A - 15	TUT 400	\/F00400	0007.04.04	Fo.' O.H.H 4000/	405000	
Active	TUT 499	YE36169	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
		\/=00/=0			10000	C1Q00517
Active	TUT 500	YE36170	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 501	YE36171	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 502	YE36172	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 503	YE36173	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
				,		C1Q00517
Active	TUT 504	YE36174	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
	10.00.	1.200	202, 0.04		1.00000	C1Q00517
Active	TUT 505	YE36175	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
71011VG	101 303	1230173	2027-04-04	Lpica Gold IIIC - 10070	100000	C1Q00517
L						C1Q00317

Active	TUT 506	YE36176	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 - C1Q00517
A = 12	TUT 507	VE00477	2007.04.04	F 0-1-11 4000/	405000	
Active	TUT 507	YE36177	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
A ativo	TUT 508	YE36178	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
Active	101 508	1 = 30176	2027-04-04	Epica Gold inc - 100%	105003	C1Q00517
A = 12	TI IT 500	VE00470	2007.04.04	F 0-1-11 4000/	405000	
Active	TUT 509	YE36179	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 510	YE36180	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 511	YE36181	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 512	YE36182	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 513	YE36183	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
				F		C1Q00517
Active	TUT 514	YE36184	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	10.0	1200101	2027 01 01	Epica Gold in 6 10070	100000	C1Q00517
Active	TUT 515	YE36185	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
ACTIVE	101 313	1230103	2027-04-04	Epica Gold IIIC - 10078	103003	C1Q00517
Active	TUT 516	YE36186	2027-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
Active	101 516	1 = 30 1 00	2027-04-04	Epica Gold inc - 100%	105003	C1Q00517
A = 12	TUT 547	VE00407	2007.04.04	F 0-1-11 4000/	405000	
Active	TUT 517	YE36187	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 518	YE36188	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 519	YE36189	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 520	YE36190	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 521	YE36191	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 522	YE36192	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
					100000	C1Q00517
Active	TUT 523	YE36193	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
7101170	101 020	1200100	2027 04 04	Epica Gold inc 10070	100000	C1Q00517
Active	TUT 524	YE36194	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
Active	101 324	1230194	2027-04-04	Epica Gold IIIC - 100 %	103003	C1Q00517
Λ -4:	TUT FOE	YE36195	2027-04-04	Fried Cald Inc. 4000/	405000	
Active	TUT 525	1 = 30 195	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 - C1Q00517
A .:	TI IT 500	\/F00400	2027.04.04	F : 0 !!! 4000/	105000	
Active	TUT 526	YE36196	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 527	YE36197	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 528	YE36198	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 529	YE36199	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 530	YE36200	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
	1		1 ===: - : - :	,		C1Q00517

Active	TUT 531	YE36201	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
						C1Q00517
Active	TUT 532	YE36202	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 533	YE36203	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517
Active	TUT 534	YE36204	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
				·		C1Q00517
Active	TUT 535	YE36205	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
				F		C1Q00517
Active	TUT 536	YE36206	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
					100000	C1Q00517
Active	TUT 537	YE36207	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
		. 20020.		_p.oa	.00000	C1Q00517
Active	TUT 538	YE36208	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
	101000	1200200	2027 01 01	Zpica Gold illo 10070	100000	C1Q00517
Active	TUT 539	YE36209	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
	101000	1200203	2027 04 04	Epica Gold IIIe 10070	100000	C1Q00517
Active	TUT 540	YE36210	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
	101040	1200210	2027 04 04	Epiod Cold IIIc 10070	100000	C1Q00517
Active	TUT 541	YE36211	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
	101041	1200211	2027 04 04	Epica Gold IIIe 10070	100000	C1Q00517
Active	TUT 542	YE36212	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023 0043 -
	101 342	1230212	2027-04-04	Lpica Gold IIIC - 10076	103003	C1Q00517
Active	TUT 543	YE36213	2027-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
Active	101 343	1230213	2027-04-04	Lpica Gold IIIC - 100%	103003	C1Q00517
Active	TUT 544	YE36214	2027-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
Active	101 344	1 = 302 14	2027-04-04	Epica Gold Inc - 100%	105005	C1Q00517
A ative	TUT 545	YE36215	2027-04-04	Epica Gold Inc - 100%	105003	Q2023 0043 -
Active	101 545	1 E 302 15	2027-04-04	Epica Gold inc - 100%	105003	
Λ - (*	TUT 540	VE00040	2007.04.04	F 0-1-11 4000/	405000	C1Q00517
Active	TUT 546	YE36216	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
	TUT 5 47	\/F00047	0007.04.07	F : 0 !!! 4000'	105000	C1Q00517
Active	TUT 547	YE36217	2027-04-04	Epica Gold Inc - 100%	105003	Q2023_0043 -
	T. IT = 40	\/====			107000	C1Q00517
Active	TUT 548	YE36218	2027-04-04	Epica Gold Inc - 100%	105O03	Q2023_0043 -
						C1Q00517

Criteria(s) used for search: Regulation type = Quartz, Claim status = Active and pending, Claim name = Tut.

Total claims selected: 539

This claim status report has been generated using the mining claims database online application https://apps.gov.yk.ca/ymcs/. This site uses a copy of the mining recorder data and is refreshed nightly. Contact the specific district for more information on a claim.

Dawson.mining@yukon.ca 867-993-5343 Mayo.mining@yukon.ca 867-996-2256 Watson.mining@yukon.ca 867-536-7366 Whitehorse.mining@yukon.ca 867-667-3190