Assessment Report

NI 43-101-Compliant Report on the 2006 Exploration Program on the White River Nickel Project Xstrata plc (Falconbridge Ltd)

Owners: Xstrata plc/ StrataGold Corp

Beaver Creek area, Yukon Territory Whitehorse Mining District

July 9 – August 24, 2006

ANT 1–330, 332, 334, 336 Claims (115K/02) YC40380 – YC40709, YC40711, YC40713, YC40714

HAND 1-27 Claims, WENG 5-10, RIVER 3-8, WR 67-69, 89 - 94 Claims (Pole block) (115F/15, 16)

YC40715 – 40741 (Hand), YA96734 – 96739 (Weng), YB38255 – 38260 (River), YB96934 – 96936 (WR 67 – 69), YB96954 – 96959 (WR 89 – 94)

PIC 1 - 156 Claims, KLUX 13 - 16 Claims (115F/16)

YC40742 –40825 (PIC 1-84), YC40979 – 40986 (PIC 85-90, 151-152), YC40832 – 40891 (PIC 91 – 150), YC18471-18474 (KLUX 13-16)

Ant Block: 62° 3' 25" N, 140° 50' 10" W (NTS Sheet 115K/02)
Onion Block: 62° 0' 13" N, 140° 37" 15"W (NTS Sheet 115K/02 and 115F/15)
CanAlask/Pole Block: 61° 57' 25" N, 140° 32' 15" W (NTS Sheet 115F/15)
Pic Block: 61° 51' 50" N, 140° 19' 00" W (NTS Sheet 115F/16)

For: Xstrata plc (formerly Falconbridge Ltd.)

3296 Francis Hughes Ave.

Laval, QC H7L 5A9 Tel: 450-668-2112

Fax:

Gord.maxwell@falconbridge.com

By: Carl Schulze, BSc, PGeo, Consulting Geologist for project

All-Terrane Mineral Exploration Services

35 Dawson Rd

Whitehorse, Yukon Y1A 5T6

Tel: 867-633-4807 Fax: 867-633-4883

allterrane@northwestel.net

Feb 26, 2007

Summary

During the summer of 2006 Falconbridge Ltd. conducted a surface exploration program on the White River Nickel Project, located south of Beaver Creek, Yukon Territory, Canada. The project is comprised of the Ant, Canalask/Onion and Pic claim blocks. The Canalask block is under option from StataGold Corporation; the balance of the property is 100% held by Xstrata Nickel plc, formerly Falconbridge Ltd. In 2005 Falconbridge conducted a two-day field visit to the Canalask and Onion properties, held by the StrataGold Corporation. Following favourable results, Falconbridge entered into an option agreement to earn an 80% interest in claims comprising the Onion and Canalask blocks and the KLUX 13-16 claims to the southeast, and expanded the land package by staking the present Pic block, surrounding the Klux claims, and the Ant block to the northwest. The Canalask block comprises the Canalask project area and the contiguous Pole project area to the southeast

The property covers the known lateral extent of the northwest – southeast striking, steeply southwest dipping "White River Intrusive Complex" (WRIC), part of the much larger and similarly oriented Kluane Mafic-Ultramafic Belt. The latter extends from northern British Columbia to east-central Alaska, within Pennsylvanian to Triassic Wrangellia Terrane volcanics and lesser sediments. The Wrangellia Terrane, together with the Alexander Terrane, forms part of a package of accreted terrane, bounded by the Shakwak Fault directly to the east.

The Kluane Mafic-Ultramafic Belt hosts numerous nickel-copper +/- platinum deposits and prospects, most notably the past producing Wellgreen Deposit, held by Coronation Minerals about 110 kilometres to the south. Within the boundaries of the White River Nickel Project claim blocks, the much smaller epigenetic Canalask nickel-copper sulphide deposit occurs roughly 200 metres north of the footwall contact of the WRIC, within the footwall Station Creek volcanics.

The White River Intrusive Complex (WRIC) is a strongly favourable setting for magmatic copper-nickel sulphide mineralization, because it is considered as a feeder system with a high volume of magma flow, and abundance of small magmatic showings along the footwall margin.

The WRIC occurs as a sill-like dyke bounded along the northeastern, footwall side by Skolai Group, Station Creek Formation andesites; and along the south-western hanging wall side by Hazen Creek Formation clastic sediments, locally calcareous, with lesser crystalline gabbro. Younger Nikolai Volcanic flood basalts underlie large portions of the Ant block, southwestern portions of the Onion project area and southeastern parts of the Canalask/Pole project areas.

The magmatic and hydrothermal settings likely share a common origin, with hydrothermal mineralization deposited from late-stage fluids related to the magmatic mineralizing event. At the Wellgreen deposit, the vast majority of mineralization is magmatic, with a much smaller proportion of hydrothermally-derived mineralization.

Therefore the size of hydrothermally derived showings in the footwall may be indicative of potential size of proximal magmatic deposits. Using this model, the size of the Canalask deposit suggests potential for a large magmatic deposit occurs in the Canalask/Pole project area.

"UTEM-3" geophysical surveying done in 2006 revealed weakly conductive features at depths of about 300 metres below surface, paralleling the WRIC within the Onion, Canalask and Pole grids. These suggest very gently southwest-dipping conductors with more abrupt contacts along the northeastern edges. The Canalask conductor extends east-southeast directly from the Main Zone, suggesting a footwall-hosted setting, whereas the Onion and Pole conductors correspond well with down-dip extensions of the WRIC itself. The Pole and Canalask conductors are obviously separate features.

Soil geochemical surveying in the Pole area revealed a Ni-Cr +/- Cu anomaly in southwestern areas, coincident with the eastern extent of the Pole conductor. A similar anomaly of more limited extent occurs in the north-central area, suggesting multiple ultramafic members of the WRIC.

A small pyroxenite pod with elevated nickel and copper values was discovered about 300 metres into the footwall area of the two WRIC horizons in the central Pic property area, also indicating potential for further units of this complex in the Pic area.

Within the Ant project area, silt sampling revealed elevated Ni-Cr-Cu values along one stream west of Beaver Creek. A granitic intrusion, the "Marilyn Creek stock", and a large, strongly altered gossanous zone, called the Manson Brook occurrence, within Nikolai Volcanic basalts were determined to have limited gold potential.

The 2007 program is recommended to occur as two phases, focusing primarily on the Canalask/ Pole and Onion project areas. Phase 1 is to consist of an airborne VTEM survey followed by a surface program of expanded UTEM surveying, soil geochemical surveying and geological mapping, leading to identification of drill targets (if any). Some further detailed mapping is recommended on the Onion, Pic, and the Ant project areas. Phase 2 is to consist of a diamond drilling program of about 3,200 metres of NTW core in six holes in the Canalask/ Pole area and two in the Onion area.

A rough estimate for the airborne survey stands at \$240,000. Total projected all-in expenses for the Phase 1 program, including a 10% contingency stand at about \$271,636. Total expenditures for the Phase 2 drilling program are projected at \$981,424, for a project total of \$1,493,060.

Table of Contents

		Page
Sumi	mary	2
1.0	Introduction	7
	1.1 Introduction	7
	1.1.1 Underlying Agreements	7
	1.2 Terms of Reference	8
	1.3 Sources of Information	8
	1.4 Field Involvement of Qualified Person	9
2.0	Property Description and Location	10
3.0	Access, Physiography and Climate	12
4.0	History	25
	4.1: History of the CanAlask Area	25
	4.2 History of the Onion area	26
	4.3 History of the Cats and Dogs (Pic) area	26
	4.4: History of the Ant Block area	27
5.0	Geological Setting	29
	5.1 General Geology	29
	5.1.1 The White River Intrusive Complex	30
	5.2 Property Geology	31
	5.2.1 Geology of the Canalask/ Pole area	31
	5.2.2 Geology of the Onion Block	32
	5.2.3 Geology of the Pic block	33
	5.2 4 Geology of the Ant Block	33
	Deposit Settings	35
7.0	Mineralization	37
	7.1 Canalask area Mineralization	37
	7.2 Pole Area Mineralization	37
	7.3: Onion Block Mineralization	38
	7.4: Pic Block Mineralization	40
	7.5 Ant Block Mineralization	41
8.0	Exploration Program	42
	8.1 Exploration Programs by Project Area	42
	8.1.1 2006 Exploration, CanAlask/Pole Project area	42
	8.1.2 2006 Exploration, Onion Project area	44
	8.1.3. 2006 Exploration, Pic Project area	45
	8.1.4 2006 Exploration, Ant Project area	46
	8.2 Personnel	47
9.0	Sampling Method and Approach	48
10.0	Sample Preparation, Analysis and Security	49
	Data Verification	51
	Adjacent Properties	51
	Mineral Processing and Metallogenic Testing	51
	Mineral Resource and Mineral Reserve Estimates	52
	Other Relevant Data and Information	52
16.0	Interpretation and Conclusions	53
	16.1 Interpretations	53
15.	16.2 Conclusions	56
17.0	Recommendations	59 50
	17.1 Recommendations	59
	17.2 Recommended Budgets	61
	17.2.1 Phase 1: Surface Exploration	61
10.0	17.2.2 Phase 2: Diamond Drilling	62
18.0	References	63

List of Tables

	Page
Table 1: Claim Status	16
Table 1a: Claim Status, ANT Block	16
Table 1b: Claim Status, Canalask/Onion blocks	19
Table 1c: Claim Status, PIC Block Table 2: 2006 Work Performed, White River Nickel Project	21 42
Table 2. 2000 Work I cholined, white River McKer Project	72
List of Figures	
Figure 1 Location Map	14
Figure 2: Regional Location Map	15
Figure 3: Claim Maps	22
Figure 3a: Ant Claim Block	22
Figure 3b: Canalask/Onion Claim Block	23
Figure 3c: Pic Claim Block	24
Appendices	
Appendix 1: Statement of Qualifications	
Appendix 2: ANT Project area sample descriptions and results	
Appendix 2a: Rock sample descriptions, results	
Appendix 2b: Soil sample descriptions, results	
Appendix 2c: Silt sample descriptions, results	
Appendix 2d: Whole Rock sample descriptions, results	
Appendix 3: CANALASK-ONION Project area sample descriptions, results	
Appendix 3a: Rock sample descriptions, results	
Appendix 3b: Silt sample descriptions, results	
Appendix 3c: Whole Rock sample descriptions, results	
Appendix 3d: Year-2005 sample descriptions, results	
Appendix 4: POLE Project area sample descriptions and results	
Appendix 4a: Rock sample descriptions, results	
Appendix 4b: Soil sample descriptions, results Appendix 4c: Silt sample descriptions, results	
Appendix 4c. 3nt sample descriptions, results	
Appendix 5: PIC Project area sample descriptions and results	
Appendix 5a: Rock sample descriptions, results	
Appendix 5b: Silt sample descriptions, results	
Appendix 5c: Whole Rock sample descriptions, results	
Appendix 6: Miles Ridge Interpretation Summary, Lamontagne Geophysics Ltd.	
Appendix 7: Original Analytical Results	
Appendix 8: Expenditures	
Appendix 8a: Expenditures, ANT Claim Block	
Appendix 8b: Expenditures, HAND at al Claim Block Appendix 8c: Expenditures, PIC Claim Block	
Appendix oc. Expenditures, ric Ciann Diock	

MAPS

Map 1: General Geology Map	(In pocket)
Map 2a: Geology Map, ANT block	(In pocket)
Map 2b: Ni geochem map, ANT block	(In pocket)
Map 2c: Cr geochem map, ANT block	(In pocket)
Map 2d: Cu geochem map, ANT block	(In pocket)
Map 2e: Au geochem map, ANT block	(In pocket)
Map 2f: Property Position, ANT block	(In pocket)
Map 3a: Geology Map, CANALASK-ONION block	(In pocket)
Map 3b: Ni geochem map, CANALASK-ONION block	(In pocket)
Map 3c: Cr geochem map, CANALASK-ONION block	(In pocket)
Map 3d: Cu geochem map, CANALASK-ONION block	(In pocket)
Map 3e: Year-2005 sample Locations, Cu/Ni geochem values,	
CANALASK-ONION block	(In pocket)
Map 3f: Property Position, ANT block	(In pocket)
Map 4a: Geology Map, Pole Project area	(In pocket)
Map 4b: Ni geochem map, Pole Project area	(In pocket)
Map 4c: Cr geochem map, Pole Project area	(In pocket)
Map 4d: Cu geochem map, Pole Project area	(In pocket)
Map 5a: Geology Map, PIC block	(In pocket)
Map 5b: Ni geochem map, PIC block	(In pocket)
Map 5c: Cr geochem map, PIC block	(In pocket)
Map 5d: Cu geochem map, PIC block	(In pocket)
Map 5e: Property Position, PIC block	(In pocket)

1.0 Introduction

1.1 Introduction

From July 9 – Sept 1, 2006 Falconbridge Ltd conducted a surface exploration program on the White River Nickel Project, occurring as three claim blocks, the ANT, CANALASK/ONION and PIC blocks, located south of Beaver Creek, Yukon Territory, Canada. Four project areas are involved: the Ant, Onion, Canalask/Pole, and Pic project areas. These blocks cover the extent of a member of the Kluane Ultramafic Belt called the White River Intrusive Complex (WRIC), and extend respectively southeast along the eastern foothills of the Kluane Ranges.

The Canalask/ Pole project area (part of the "Canalask Option") covers the "Main" and "Footwall" copper-nickel deposits developed in the 1950s along the margins of a major unit of the WRIC directly east of the White River. The contiguous Onion block covers the northwestern extension of this complex northwest of the White River. The PIC block covers narrow units of this complex to the southeast, and the ANT block covers the potential extension of stratigraphy to the northwest of the Onion block.

In September, 2005 Falconbridge Ltd. entered into an agreement to obtain a 100% interest in the CANALASK/ONION block and the KLUX 13-16 claims, located about 18 kilometres southeast and currently surrounded by the PIC claims, from the StrataGold Corporation. This followed favourable results from a two-day August 2005 field visit. Following this, Falconbridge staked the HAND claims as a contiguous block along the southeast margin of the CANALASK block, and also staked the PIC block, centered on the KLUX claims, and the ANT block.

In September 2006 Falconbridge Ltd. was taken over by Xstrata plc, based in Zug, Switzerland.

1.1.1 Underlying Agreements

In early October 2005 Falconbridge Ltd. finalized an option agreement to earn an 80% interest in the WENG 1F, 2F 3-11, ONION 1-25, WR 1-69, 83-94, 101-121, WHITE 1-19, CANA 1-6, MICRO 1-11, and RIVER 1-8 claims comprising most of the CanAlask-Onion block, and the KLUX 13-16 claims now located within the PIC block. To earn this interest, Falconbridge, the project operator, must incur exploration and development expenses totaling CDN\$500,000 by December 31, 2006 and of CDN\$3 million by December 31, 2009. Falconbridge Ltd. was mandated as operator, and agreed to expenditures of CDN\$500,000 by December 31, 2006.

On October 3, 2005 Falconbridge staked the ANT 1-330, 332, 334, 336 claims, the HAND 1-27 claims along the southeast border of the CanAlask block, and the PIC 1-156 claims, centered on the KLUX 13-16 claim block (Figures 3a-c). In September 2006

Xstrata plc, finalized its acquisition of Falconbridge Ltd. The terms of agreement of StrataGold claims, and claim ownership of non-StrataGold claims were transferred to Xstrata plc.

1.2 Terms of Reference

The author has been requested to write this report using these terms of reference:

- a) To review and compile the available information and data, including geological, structural, geochemical and geophysical data obtained by Falconbridge Ltd. during the 2006 field season, and by Falconbridge Ltd. during field visits in August prior to acquisition, pertaining to the White River Nickel project and associated interpreted nickel-copper-platinum group metals potential, and gold potential on the ANT claims.
- b) To comply with the TSX Exchange regulatory requirements.
- c) To follow the guidelines and framework defined in the Form 43-101-F1, pertaining to National Instrument 43-101: "Standards of Disclosure for Mineral Projects".
- d) To support the technical disclosures by Xstrata plc. in their Annual Information Forms.
- e) To satisfy assessment filing requirements under the Yukon Quartz Mining Act administered by the Department of Energy, Mines and Resources, Government of Yukon.

1.3: Sources of Information

This report is based on information obtained from assessment reports and internal documents, including geological, geophysical and geochemical maps, rock, soil and silt geochemical results, and results from several episodes of past drilling. Government reports, including Yukon Minfile reports, as well as personal communication with Yukon government geologists, particularly Messrs. Stephen Israel and Donald Murphy of Whitehorse, Yukon, were also used as source material.

Most notable among private sector sources, largely assessment reports, are those pertaining to T. Antoniuk, Canalask Nickel Mines Ltd, Expatriate Resources Ltd and Uravan Minerals Inc. A large amount of geological information was obtained from Bulletin 506, Geological Survey of Canada, by Mr. Hurlbut, concerning the geology and metallogeny of the Kluane Mafic-Ultramafic Belt within the Yukon Territory.

Much of the historic data and some geological data used in this report were taken from a compilation by Mr. John Pattison, performed under contract to Falconbridge in late 2005.

This report is also based on results from the 2006 Falconbridge program and 2005 Falconbridge field visit, and on results of compilation of all historic data.

1.4 Field Involvement of Qualified Person

Mr. Carl Schulze, PGeo, the Qualified Person for this report, was involved in on-site management of the 2006 program, and was present throughout most of the program. Mr. Schulze designed the geological mapping and geochemical surveying programs on the Ant and Pole project areas, and the silt surveying program on the PIC block. Mr. Schulze was present on the CanAlask area in 2005 and 2006, and was active on the Onion block in 2005.

Compilation and interpretation of 2005 and 2006 geological, geochemical and geophysical results was done by All Terrane Mineral Exploration Services, of which Mr. Schulze is sole proprietor.

Disclaimer: The author cannot verify the quality of sample collection, preparation, analysis, shipping and security, or of reporting of geological, geochemical, structural or any other geoscience data obtained from historical documents pertaining to the White River Nickel project, except for results from the 2005 and 2006 Falconbridge programs.

2.0 Property Description and Location

The White River Nickel project consists of three main claim blocks covering much of the "White River Intrusive Complex", a member of the Kluane Mafic-Ultramafic Belt within the Wrangellia terrane. From northwest to southeast these are the Ant, Canalask/ Onion and PIC claim blocks. The Canalask/ Onion block hosts three project areas: the CanAlask area, hosting two previously delineated nickel-copper deposits; the Pole project area, about two kilometers southeast, and the Onion project area, extending about six kilometers to the northwest. The Canalask and Pole project areas are collectively referred to as the Canalask/ Pole project area

The Ant block consists of 333 contiguous Yukon quartz mining claims, the ANT 1-330, 332, 334, and 336 claims, comprising about 7,060 hectares (17,437 acres). This block is centered at 62° 3' 25" N, 140° 50' 10" W (NTS Sheet 115K/02), roughly 20 kilometres northwest of the CanAlask deposits and covering the potential northwestern extension of the WRIC (Figures 2, 3a, Table 1).

The CanAlask/ Onion block consists of the WENG 1F, 2F 3-11, ONION 1-25, WR 1-69, 83-94, 101-121, WHITE 1-19, CANA 1-6, MICRO 1-11, and RIVER 1-8 claims, under option from StrataGold Corp, and the HAND 1-27 claims, 100% owned by Xstrata plc (Falconbridge Ltd.). These form a contiguous block of 209 full and fractional quartz mining claims, comprising 3,731 hectares (9,216 acres). The "Main Zone" of the CanAlask deposit is located at 61° 57' 25" N, 140° 32' 15" W, on NTS Sheet 115F/15; the "Discovery showing" of the ONION block is located at 62° 0' 13" N, 140° 37" 15"W, on NTS Sheet 115K/02, and the Pole grid is centered at 61° 56' 24" N Lat, 140°, 29' 23" W Long on NTS Sheet 115F/16.

The Pic Block consists of 160 contiguous full and fractional Yukon quartz mining claims, the KLUX 13–16 claim under option from StrataGold Corp, and the PIC 1-156 claims, entirely held by Xstrata plc (Table 1, Figure 3c). The claims cover about 3,138 hectares (7,750 acres) and are centered at 61° 51' 50" N, 140° 19' 00" W (NTS Sheet 115F/16).

The ANT and ONION blocks are separated by a parcel of Class A First Nations land; the WRFN IR-16A tract; the HAND (CanAlask) claims and PIC block are separated by another parcel of Class A land, the WRFN R-35A block. Both parcels entitle the White River First Nation to surface and subsurface rights. The White River First Nation has not finalized its land claim agreement, although the land selection process is considered complete.

All claims are contiguous and unpatented (Table 1, Figures 3a-c) and have not undergone a legal survey. Details of underlying agreements are stated in Section 1.1.1, "Underlying Agreements"; expiry dates are stated in Table 1.

The property areas were acquired to cover the WRIC, one of the largest ultramafic complexes within the Kluane Mafic-Ultramafic Belt. This complex has high potential to host magmatic nickel-copper sulphide mineralization similar to the Wellgreen nickelcopper deposit about 110 kilometres to the southeast within the Quill Creek Complex of the Kluane Mafic-Ultramafic Belt. A secondary target is the epigenetic Canalask deposit, consisting of two major zones of copper – nickel sulphide mineralization, called the "Main" and "Footwall" zones respectively, located towards the western end of the CanAlask block, just east of the White River. By 1968, a resource of 390,235 tons grading 1.35% Ni was established (T. Antoniuk, 1968, FL file R-11664). L. Hulbert (1997) stated that this does not factor in dilution, thus a more realistic estimate is of an "ore reserve of 1,800,000 tonnes of 0.86% Ni". It must be noted that these estimates were released prior to establishment of current resource estimate standards under National Instrument 43-101, do not distinguish between resource categories, have not been substantiated by Falconbridge Ltd or Xstrata plc, and should not be relied upon. The parallel "Footwall zone" occurs about 75 metres to the north, and is characterized by "narrow intervals of moderate copper and nickel grade" (Hulburt, 1997) intersected by several drill holes.

Past mine workings consist of underground excavations on several levels accessed by an adit along the east bank of the White River. There are also small surface excavations, likely for extraction of small bulk samples, in the Main and Footwall Zone areas. Numerous small trenches occur in the CanAlask area; a few also occur in the "Discovery" area on the Onion block (Map 3a). Previous drill sites have been reclaimed or have undergone natural re-vegetation and are difficult to locate. There are no existing tailings ponds, or major bulk sample excavations, and waste deposits consist of small tailings piles comprising a few tonnes each along an existing access road to the Canalask deposit. The 2006 program resulted in no significant disturbances.

The adit has not been sealed, although Falconbridge ensured high visibility through warning signs and markings. There are no other known environmental liabilities on the property. All 2006 activities were properly permitted, including proposed drilling, which has been postponed. The current permit is valid through June 2011.

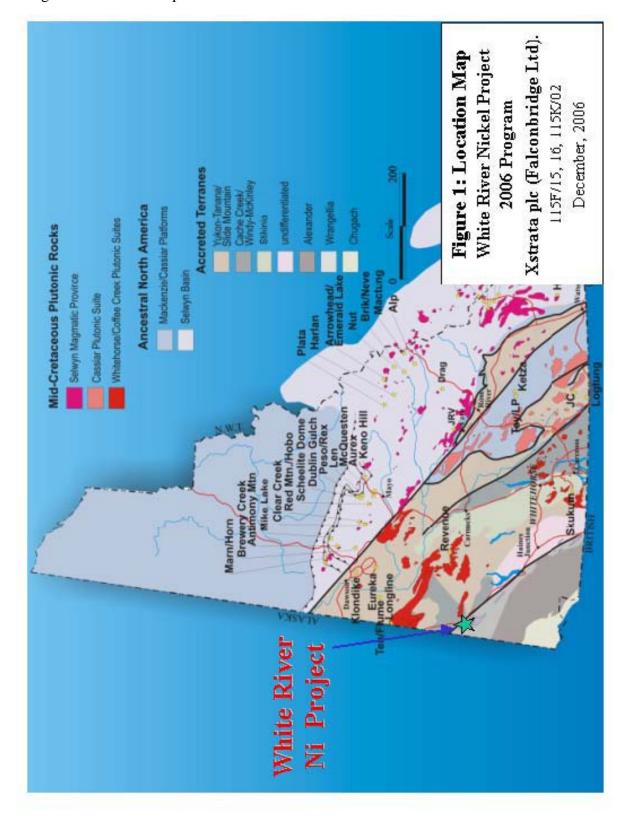
3.0 Access, Physiography and Climate

The Onion portion of the CanAlask-Onion block, including all areas north of the White River, occurs along Miles Ridge, a steep northwest-southeast trending small mountain range with elevations to about 5,500 feet (1,675 metres). The east flank of the ridge is rugged and locally impassable, with steep terrain incised by numerous small streams. Tundra vegetation covers ridgelines, although much of the upper portions of the east flank, including the target areas, are devoid of vegetation. Stunted conifer and scrub covers areas below 4,000 feet (1,220 metres).

The CanAlask-Pole project areas cover a lower area of moderate relief, with local steep hills in the southeastern portion of the Pole area. Elevations range from about 2,200 feet (670 metres) along the White River to about 5,000 feet (1,525 metres) in extreme southern areas, although most areas are below 3,500 feet (1,075 metres). Vegetation consists of immature hardwood and mixed forest in well-drained areas, with a large portion covered by boggy or swampy areas with stunted conifer and/or willow scrub.

The PIC block covers very similar terrain to that of the Onion block, with similar tundra vegetation covering elevations to 6,000 feet (1,830 m). Several benches of moderate to gentle relief occur below the 1,200-metre level (Figure 3b).

The central portion of the Ant block, west of Beaver Creek, consists of moderate terrain largely covered by muskeg with stunted conifers, with numerous narrow steep stream valleys. The western area, bounded by Sanpete Creek (Figure 3a) is rugged, particularly along the northwest side of this creek, with Chair Mountain attaining an elevation of about 5,500 feet (1,675 metres). Ed Mountain in the north-central area attains an elevation of 5,100 feet (1,550 metres). Terrain west of Beaver Creek is very rugged, exceeding 5,500 feet in height. Rugged areas above tree line are commonly devoid of vegetation, although tundra vegetation covers areas of moderate terrain.


The area has a typically sub-arctic montane climate, with short fairly warm summers. Summer temperatures along valley floors are typically in the 15° to 25°C range. Winters are long and very cold, with average temperatures in the -20° to -30° C range. Precipitation is light, falling mostly as rain, with snowpack accumulations usually less than one metre. The exploration season extends from early June through late September. Water access for diamond drilling is fair during the field season, although the small streams likely become dry shortly following the onset of winter.

Seasonal access to the Canalask deposits is by a rough road usable by 4 x 4 vehicles, extending south for roughly 3.5 kilometres from the Alaska Highway about 1.5 km east of the White River bridge. The Pole area and portions of the Canalask block are accessible by all-terrain or "Argo" amphibious vehicles. All other project areas are accessibly only by helicopter.

The Canalask-Pole portion of the Canalask-Onion claim block, and the Ant claim block, are large enough and of suitably moderate to gentle terrain to accommodate mining facilities, potential mill processing sites, heap leach pads, and waste disposal sites. Suitable terrain for such facilities is extremely limited on the Onion block, complicated by its partial encapsulation by the White River First Nation parcel. Land for cultural development is also somewhat limited on the Pic block, bounded by a wildlife preserve to the northeast, although flat terrain is available for property expansion just north of the southeastern portion.

Some facilities, including good lodging and restaurant facilities and a limited work force, are available in the village of Beaver Creek, with a population of 90, located along the Alaska Highway about 55 km north of the White River bridge. Full service facilities, including an available skilled work force, are available at Whitehorse, located along the Alaska Highway about 480 kilometres to the southeast. The Alaska Highway is a major paved highway, connecting the Beaver Creek area both to southern Canada and to Alaska, just northwest of Beaver Creek. A diesel generator supplies electrical power to Beaver Creek; these facilities would have to be upgraded, or independent facilities built, to service any future mining and milling operations.

Figure 1: Location Map

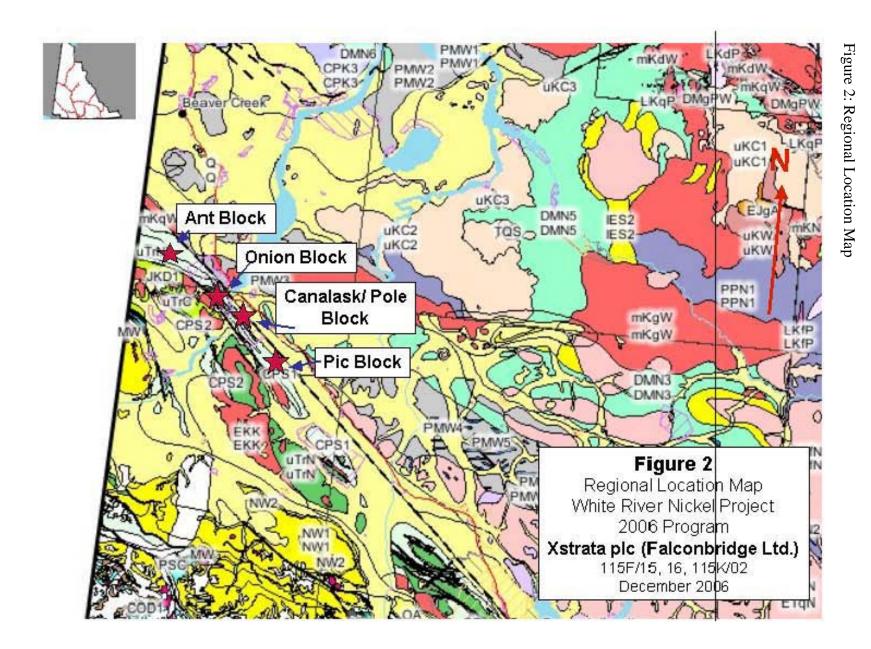


Table 1 (a-c) Claim Status, ANT, Can-Alask-Onion and Pic project areas respectively

Table 1a

Claim Status, ANT Claim Block

XSTRATA plc (FALCONBRIDGE Ltd.)

Grant No	Claim Name	Claim Owner	Recording Date	Expiry Date
Orani No	Oldini Name	Oldini Owner	recording Date	Expiry Date
YC40380 - 40392	ANT 1 - 13	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40393 - 40416	ANT 14 - 37	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40417	ANT 38	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40418	ANT 39	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40419	ANT 40	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40420	ANT 41	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40421	ANT 42	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40422	ANT 43	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40423	ANT 44	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40424	ANT 45	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40425	ANT 46	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40426 - 40465	ANT 47 - 86	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40466 - 40475	ANT 87 - 96	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40476	ANT 97	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40477 - 40478	ANT 98 - 99	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40479	ANT 100	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40480	ANT 101	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40481	ANT 102	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40482	ANT 103	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40483	ANT 104	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40484	ANT 105	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40485	ANT 106	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40486	ANT 107	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40487	ANT 108	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC-40488 - 40489	ANT 109 - 110	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40490	ANT 111	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40491	ANT 112	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40492	ANT 113	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40493	ANT 114	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40494	ANT 115	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40495	ANT 116	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40496	ANT 117	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40497	ANT 118	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40498	ANT 119	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40499	ANT 120	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40500	ANT 121	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07

YC40501 - 40510	ANT 122 - 131	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40511 - 40518		Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40519	ANT 140	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40520	ANT 141	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40521	ANT 142	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40522 - 40527		Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40528 - 40530	ANT 149 - 151	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40531	ANT 152	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-09
YC40532	ANT 153	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40533	ANT 154	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-09
YC40534	ANT 155	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40535	ANT 156	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-09
YC40536	ANT 157	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40537	ANT 158	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40538 - 40542	ANT 159 - 163	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40543	ANT 164	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40544	ANT 165	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40545	ANT 166	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40546 - 40553	+	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40554	ANT 175	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40555 - 40562		Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40563 - 40570		Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40571	ANT 192	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-09
YC40572	ANT 193	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40573	ANT 194	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-09
YC40574 - 40575	ANT 195 - 196	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40576	ANT 197	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-09
YC40577 - 40578	ANT 198 -199	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40579	ANT 200	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-09
YC40580	ANT 201	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40581	ANT 202	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40582	ANT 203	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40583 - 40584	ANT 204 - 205	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40585	ANT 206	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10
YC40586	ANT 207	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40587	ANT 208	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10
YC40588	ANT 209	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40589	ANT 210	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10
YC40590 - 40592	ANT 211 - 213	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40593	ANT 214	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-11
YC40594	ANT 215	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40595	ANT 216	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-11
YC40596	ANT 217	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40598 - 40619	ANT 219 - 240	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40620	ANT 241	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40621	ANT 242	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40622	ANT 243	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08

YC40623 - 40625	ANT 244 - 246	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40626	ANT 247	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40627	ANT 248	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40628	ANT 249	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40629	ANT 250	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40630	ANT 251	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40631	ANT 252	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40632	ANT 253	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-08
YC40633	ANT 254	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40634 - 40637	ANT 255 - 258	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40638	ANT 259	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10
YC40639	ANT 260	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-09
YC40640 - 40645	ANT 261 - 266	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10
YC40646 - 40648	ANT 267 - 269	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-11
YC40649	ANT 270	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10
YC40650	ANT 271	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-11
YC40651	ANT 272	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10
YC40652	ANT 273	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-11
YC40653	ANT 274	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10
YC40654 - 40661	ANT 275 - 282	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40662 - 40679	ANT 283 - 300	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40680	ANT 301	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40681	ANT 302	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40682	ANT 303	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40683	ANT 304	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40684	ANT 305	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40685 - 40689	ANT 306 - 310	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-07
YC40690 - 40699	ANT 311 - 320	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-09
YC40700	ANT 321	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-10
YC40701	ANT 322	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-09
YC40702 - 40709	ANT 323 - 330	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-10
YC40711	ANT 332	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10
YC40713	ANT 334	Falconbridge Ltd (100%)	3-Oct-05	03-Oct-10
YC40714	ANT 336	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-10

Table 1b:

Claim Status, CANALASK - ONION Claim Block

XSTRATA plc (FALCONBRIDGE Ltd.)

Grant No	Claim Name	Claim Owner	Recording Date	Expiry Date
YA96595 - 96597	ONION 1 - 3	StrataGold Corp (100%)	19-Dec-86	19-Mar-11
YC96598 - 96599	ONION 4 - 5	StrataGold Corp (100%)	19-Dec-86	19-Mar-14
YA96600 - 96607	ONION 6 - 13	StrataGold Corp (100%)	19-Dec-86	19-Mar-17
YA97913 - 97914	ONION 14 - 15	StrataGold Corp (100%)	23-Jun-87	19-Mar-10
YA97915 - 97916	ONION 16 - 17	StrataGold Corp (100%)	23-Jun-87	19-Mar-13
YA97917 - 97924	ONION 18- 25	StrataGold Corp (100%)	23-Jun-87	19-Mar-16
YB96868 - 96887	WR 1 - 20	StrataGold Corp (100%)	18-Oct-96	10-Apr-11
YB96888	WR 21	StrataGold Corp (100%)	18-Oct-96	10-Apr-10
YB96889	WR 22	StrataGold Corp (100%)	18-Oct-96	10-Apr-09
YB96890	WR 23	StrataGold Corp (100%)	18-Oct-96	10-Apr-10
YB96891 - 96892	WR 24 - 25	StrataGold Corp (100%)	18-Oct-96	10-Apr-09
YB96893 - 96899	WR 26 - 32	StrataGold Corp (100%)	18-Oct-96	10-Apr-10
YB96900	WR 33	StrataGold Corp (100%)	18-Oct-96	10-Apr-09
YB96901	WR 34	StrataGold Corp (100%)	18-Oct-96	10-Apr-11
YB96902	WR 35	StrataGold Corp (100%)	18-Oct-96	10-Apr-09
YB96903	WR 36	StrataGold Corp (100%)	18-Oct-96	10-Apr-11
YB96904 - 96905	WR 37 - 38	StrataGold Corp (100%)	18-Oct-96	10-Apr-10
YB96906 - 96907	WR 39 - 40	StrataGold Corp (100%)	18-Oct-96	10-Apr-12
YB96908 - 96909	WR 41 - 42	StrataGold Corp (100%)	18-Oct-96	10-Apr-10
YB96910	WR 43	StrataGold Corp (100%)	18-Oct-96	10-Apr-10
YB96911 - 96913	WR 44 - 46	StrataGold Corp (100%)	18-Oct-96	10-Apr-09
YB96914 - 96927	WR 47 - 60	StrataGold Corp (100%)	18-Oct-96	10-Apr-11
YB96928	WR 61	StrataGold Corp (100%)	18-Oct-96	10-Apr-10
YB96929 - 96931	WR 62 - 64	StrataGold Corp (100%)	18-Oct-96	10-Apr-11
YB96932	WR 65	StrataGold Corp (100%)	18-Oct-96	10-Apr-07
YB96933	WR 66	StrataGold Corp (100%)	18-Oct-96	10-Apr-10
YB96934 - 96936		StrataGold Corp (100%)	18-Oct-96	10-Apr-13
YB96948 - 96953		StrataGold Corp (100%)	18-Oct-96	10-Apr-10
YB96954 - 96955		StrataGold Corp (100%)	18-Oct-96	10-Apr-15
YB96956 - 96959		StrataGold Corp (100%)	18-Oct-96	10-Apr-13
	WR 101	StrataGold Corp (100%)	11-Feb-97	10-Apr-10
YB97335 - 97341		StrataGold Corp (100%)	11-Feb-97	10-Apr-14
YB97342 - 97346	WR 109 - 113	StrataGold Corp (100%)	07-Mar-97	10-Apr-14
YB97347 - 97348		StrataGold Corp (100%)	07-Mar-97	10-Apr-08
YB97349 - 97354		StrataGold Corp (100%)	07-Mar-97	10-Apr-07
YB38234 - 38241		StrataGold Corp (100%)	31-Aug-93	10-Apr-16

YB38242	WHITE 9	StrataGold Corp (100%)	31-Aug-93	10-Apr-13
YB38243	WHITE 10	StrataGold Corp (100%)	31-Aug-93	
YB38244	WHITE 11	StrataGold Corp (100%)	31-Aug-93	
YB38245	WHITE 12	StrataGold Corp (100%)	31-Aug-93	
YB38246	WHITE 13	StrataGold Corp (100%)	31-Aug-93	
YB38247 - 38252	WHITE 14 - 19	StrataGold Corp (100%)	31-Aug-93	10-Apr-12
YA97083	CANA 1	StrataGold Corp (100%)	18-Mar-87	10-Apr-11
YA97084	CANA 2	StrataGold Corp (100%)	18-Mar-87	10-Apr-15
YA97085	CANA 3	StrataGold Corp (100%)	18-Mar-87	10-Apr-11
YA97086	CANA 4	StrataGold Corp (100%)	18-Mar-87	10-Apr-15
YA97087	CANA 5	StrataGold Corp (100%)	18-Mar-87	10-Apr-11
YA97088	CANA 6	StrataGold Corp (100%)	18-Mar-87	10-Apr-15
86108 - 86109	MICRO 1 - 2	StrataGold Corp (100%)	28-Apr-64	10-Apr-11
86111	MICRO 3	StrataGold Corp (100%)	28-Apr-64	10-Apr-15
86112	MICRO 4	StrataGold Corp (100%)	28-Apr-64	10-Apr-11
86115	MICRO 6	StrataGold Corp (100%)	28-Apr-64	10-Apr-11
86360	MICRO 12	StrataGold Corp (100%)	28-May-64	10-Apr-11
86367	MICRO 10	StrataGold Corp (100%)	28-May-64	10-Apr-15
86368	MICRO 11	StrataGold Corp (100%)	28-May-64	10-Apr-11
YB38253 - 38254	RIVER 1 - 2	StrataGold Corp (100%)	31-Aug-93	10-Apr-12
YB38255 - 38260	RIVER 3 - 8	StrataGold Corp (100%)	31-Aug-93	10-Apr-17
YA96585	WENG 1F	StrataGold Corp (100%)	19-Dec-86	10-Apr-11
YA96586	WENG 2F	StrataGold Corp (100%)	19-Dec-86	10-Apr-11
YA96732 - 96733	WENG 3 - 4	StrataGold Corp (100%)	16-Jan-87	10-Apr-11
YA96734 - 96739	WENG 5 - 10	StrataGold Corp (100%)	16-Jan-87	10-Apr-16
YB06099	WENG 11	StrataGold Corp (100%)	15-Jul-87	10-Apr-15
YC40715 - 40741	HAND 1-27	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-11

Table 1c:

Claim Status, PIC Claim Block

XSTRATA plc (FALCONBRIDGE Ltd.)

Grant No	Claim Name	Claim Owner	Recording Date	Expiry Date
YC40742 - 40772	PIC 1 - 31	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40773	PIC 32	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40774	PIC 33	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40775	PIC 34	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40776	PIC 35	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40777	PIC 36	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40778	PIC 37	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40779	PIC 38	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40780 - 40805	PIC 39 - 64	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40806	PIC 65	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40807	PIC 66	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40808	PIC 67	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40809	PIC 68	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40810 - 40823	PIC 69 - 82	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40824 - 40825	PIC 83 - 84	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40979 - 40984	PIC 85 - 90	Falconbridge Ltd (100%)	28-Nov-05	28-Nov-07
YC40832 - 40865	PIC 91 - 124	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40866	PIC 125	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-08
YC40867 - 40891	PIC 126 - 150	Falconbridge Ltd (100%)	03-Oct-05	03-Oct-07
YC40985 - 40990	PIC 151 - 156	Falconbridge Ltd (100%)	28-Nov-05	28-Nov-07
YC18471 - 18474	KLUX 13 - 16	StrataGold Corp (100%)	07-Mar-00	07-Mar-09

Figures 3a-c. Claim Maps, Ant, CanAlask-Onion and Pic project areas. Figure 3a. Ant Claims

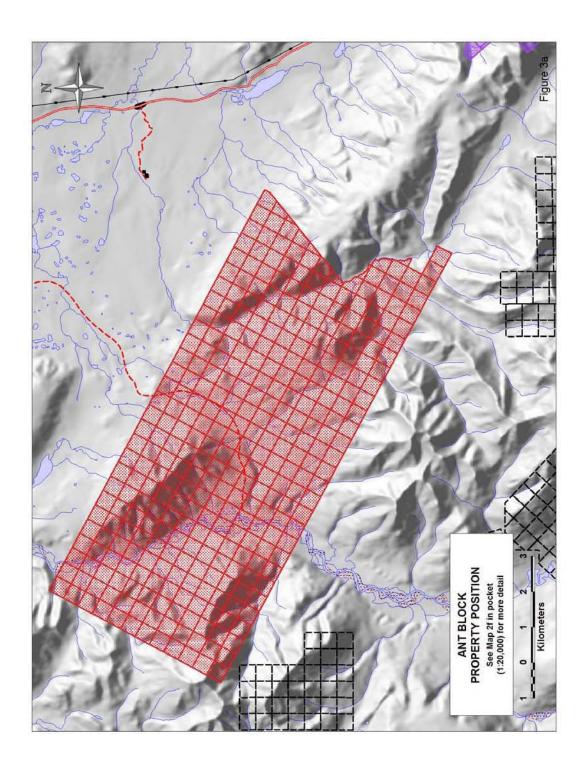


Figure 3b Canalask/ Onion block

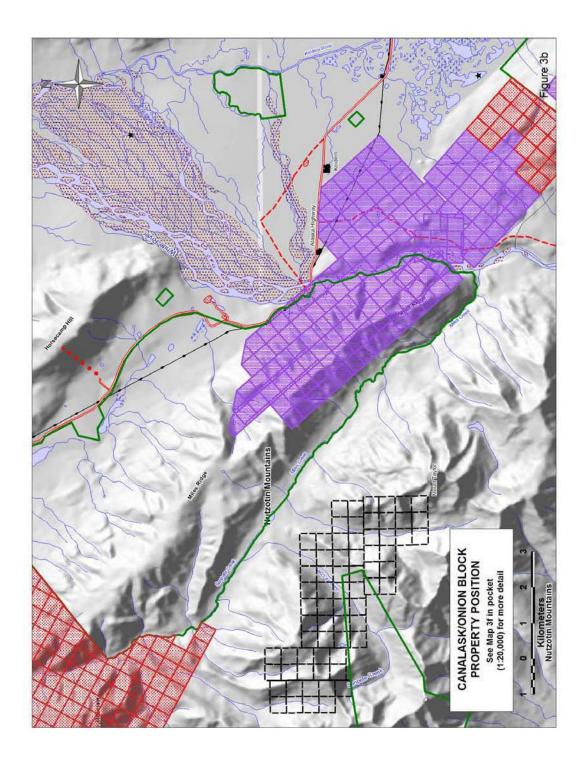
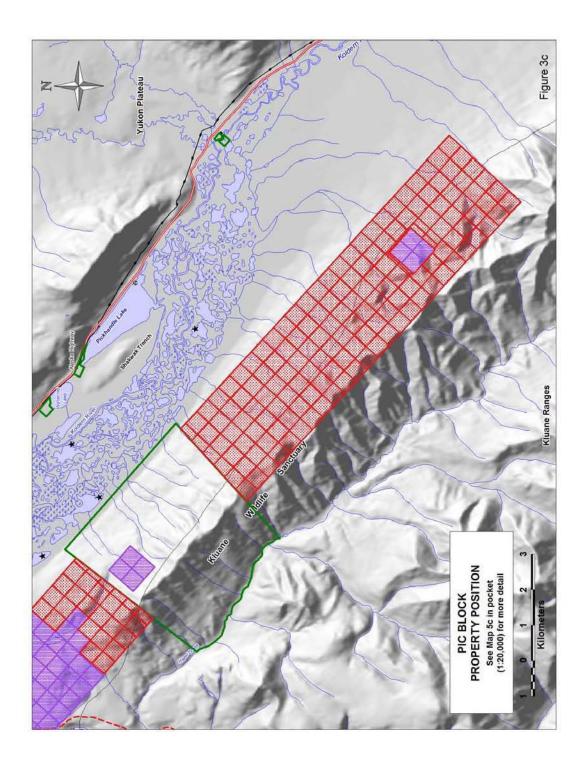



Figure 3c: Pic block

4.0 History

This section is based largely on a project area summary produced by J. Pattison in late 2005, and from the Yukon Minfile.

4.1: History of the CanAlask Area

Interest in the Canalask area was first sparked with the discovery of the Canalask showing in 1952 by P. Eikland, W. Theriault and F. Hickey. The three prospectors staked 32 WHITE, WOLVERINE and CARIBOU claims in March 1953, covering the occurrence (rusty mineralized volcano-sedimentary rocks exposed on a bluff on the east bank of the White River). The claims were optioned to Prospectors Airways Company Ltd. on behalf of a syndicate including Noranda Mines Ltd. and Kerr Addison Gold Mines Ltd (Yukon Minfile, 2006). The syndicate drilled 14 holes totaling 1652.3 m before dropping the option in March, 1954.

In 1954 Canalask Nickel Mines Limited (an amalgamation of Ontario Nickel Mines Ltd. and Frobisher Ltd.) optioned the Canalask property. Between 1954 and 1958 Canalask completed 518.2 m of drifting on two levels (2400' and 2700'). Access was via an adit on the 2700' level. Canalask completed 466.7 m of underground and 1,025 m of surface drilling on the showing. Canalask also optioned several other claim groups along the White River Intrusive Complex (WRIC), including the CATS and DOGS claim groups located in the WRIC about 18 km southeast of the Canalask deposit. After 1958 no further work was done on the Canalask or on any of the surrounding properties. The Canalask claims were allowed to lapse in 1963.

The Canalask area was re-staked as the MICRO 1-9 claims in March, 1964 by P. Versluce, H. Versluce and C. Gibbons, who conducted trenching in 1965 and 1966. In 1967 the property was optioned it to Discovery Mines Ltd., Rayrock Mines Ltd. and Consolidated Canadian Faraday Ltd. In 1967, the syndicate performed magnetometer, IP and EM geophysical surveys, bulldozer trenching and diamond drilling (2 surface holes totaling 370.9 metres). In 1968, Faraday transferred its interest to Pacific Petroleum Ltd; the underground workings were re-opened and 370.9 metres of underground drilling was done, as well as 1,005.9 metres of drilling from surface.

The option was dropped, and the owners performed more trenching in 1970. In 1972, the property was optioned to the Nickel Syndicate (Canadian Superior Exploration Ltd., Aquitaine, Home Oil Ltd. and Getty Minerals Ltd.). The Nickel Syndicate conducted mapping and geophysical surveys (magnetometer and EM) and drilled 7 holes (VQ-1 to VQ-7) totaling 640 m. The option was terminated in 1974. The owners rehabilitated the portal in 1978 (Yukon Minfile, 1978).

In 1986 the property was optioned to the Kluane Joint Venture, consisting of All-North Resources Ltd. and Chevron Minerals Ltd. and joint-ventured with Rockridge Mining

Corporation. This Joint Venture conducted mapping, magnetometer and VLF surveys, minor geochemical surveying and 603.2 metres of diamond drilling in 5 holes over the Main Zone area in 1987.

In 1986 Polestar Exploration Inc. staked the V 1-36 claims over the WRIC northwest and southeast of the Canalask deposit. Polestar conducted prospecting and collected "approximately" 374 soil and 223 rock samples. Harjay Exploration Co. Ltd. staked the CT 1-17 claims to the north and the WR 17-26 claims to the southwest. Brian Lueck staked the KM 1-12 claims to the west in October, 1987. In 1988 Lodestar Exploration Ltd conducted magnetometer and VLF surveying on the CT claims. In 1989 G. Harris staked the LOBO 1-10 claims about one kilometre to the southwest.

In 1993 Expatriate Resources purchased a 100% interest in the CANA, MICRO, WENG and ONION claim groups and later that year staked the WHITE 1-18 and 20, and the RIVER 1-8 claims. They carried out trenching, magnetometer and VLF surveying, and geochemical and geological surveying. In 1994 Cachet Enterprises Corporation entered into an option to earn a 50% interest in the MICRO claims. Cachet conducted magnetic, VLF and horizontal loop EM surveys and drilled 11 holes totaling 1,472 m. Cachet dropped the option in 1996.

In 1996 Expatriate expanded its property position to cover all of the WRIC between the Canalask deposit and the Discovery Showing. A 253 line-km Dighem V helicopter-borne magnetometer and frequency domain EM survey was flown over the property, now expanded to resemble the present Canalask-Onion block. Traverse lines were flown at a bearing of 045° with an average separation of 100 m. In 1997 Expatriate conducted a Max-Min survey to locate weak to moderate strength airborne conductors situated in the WRIC close to the Canalask deposit and then drilled ten holes for 1,277.7 metres to test them.

In 1999 Uravan Minerals Inc. entered into an option agreement to earn a 60% interest in the property. Uravan focused its attention on the Onion block area.

The claims were transferred to the StrataGold Corporation in May, 2003. In August 2005, Falconbridge visited the Canalask and Onion areas, obtaining numerous samples for ICP analysis, including copper and nickel analysis, as well as samples for whole rock analysis. In October 2005 Falconbridge finalized its agreement to earn an 80% interest in all claims held by the StrataGold Corporation.

4.2 History of the Onion area

Much of this section is also taken from notes by J. Pattison and the Yukon Minfile.

In 1952 prospectors working on Miles Ridge at the western end of the White River Complex, 7 km northwest of the Canalask showing, discovered a nickel-copper occurrence known as the Discovery showing. The showing was staked as the BETH

claims in July 1952 by Prospectors Airways Ltd. In September 1953 Canalask Nickel ML staked the MARG claim(s) nearby to the west as follow-up to aeromag survey results.

The BETH area was re-staked as the ELLIK etc claims in 1956 by Per Johnson and W. Abraham, who conducted sampling and hand trenching; then as the SUCCESS block by G. Harris in 1957. It was re-staked as the ONION block in July, 1960 by Conwest, then as the FOX and SPARKY claims in 1964, then as the JUMBO claims in 1964 and finally as the OWL block in July 1965. Cominco Ltd. optioned the property in 1966 and conducted mapping and sampling. The showing area was re-staked as the PORKY block in 1967, as the SPARKY in 1968 and as the MICRO claims in 1969, by C. Gibbons, who also was involved in staking the MICRO claims still extant in the Canalask area.

In 1986 the showing area was re-staked as the ONION block by the Kluane Joint Venture, consisting of All-North Resources Ltd. and Chevron Minerals Ltd., which optioned it to Rexford Minerals Ltd. Rexford conducted geochemical sampling and geological mapping in 1987 and geophysical surveying in 1988, before adding more ONION claims in 1989. In 1993 Expatriate purchased a 100% interest in the ONION claims, and, in 1996 surrounded these with the WR claims.

In 1998 Expatriate conducted prospecting and silt sampling on Miles Ridge. The work occurred across a seven-kilometre portion of the footwall contact of the WRIC that included the Discovery showing area.

In 1999 Uravan Minerals Inc. entered into an option agreement to earn a 60% interest in the property. In 2001 Uravan conducted detailed mapping, lithogeochemical sampling, surface magnetometer, Max Min and IP surveys on Miles Ridge. A petrographic and lithogeochemical study of the rock samples collected was also done.

In 2002 Uravan drilled two holes (495 m) to test weak Max-Min conductors in the vicinity of the Onion SW and Sax Ni-Cu occurrences on Miles Ridge.

4.3 History of the Cats and Dogs (Pic) area

In 1953, Canalask Nickel Mines staked the CATS and DOGS claim groups to cover an elongate, 3.2 km long aeromagnetic anomaly at the southeastern end of the WRIC. Pieces of serpentinized copper-nickel sulphide-bearing ultramafic float were reportedly found at scattered locations throughout the area. A winter road was built and an attempt was made to drill the area in 1954 but the drill was unable to penetrate the overburden.

The showings were re-staked as the BEAN 1-4 claims in 1966 by R.A. Dickson, and as the NICU 1-4 claims in 1967 by General Enterprises Ltd. In 1967 General Enterprises carried out bulldozer trenching.

In 1968 P. Versluce and R. Hilker re-staked this area as the JJ 1-22 and GG 1-56 claims, and performed bulldozer trenching in 1969. The results of the trenching are not known. The owners staked the M 1-14 and 19-61 claims to the northwest in 1973 and added more claims in 1974 and 1975.

In 1975, Western Mines Limited (a Brascan subsidiary) optioned the property and conducted mapping, prospecting and limited magnetometer surveys over the area. No significant nickel mineralization was found but numerous vein-hosted copper sulphide showings were discovered in volcanic and sedimentary rocks of the Skolai Group. Western Mines conducted geological mapping in 1976 before dropping its option.

In 1986 the Kluane Joint Venture re-staked the areas as the CATS 1-20 and DOGS 1-16 claims, and optioned the property to Silverquest Resources Ltd. in April, 1987. Later that year, Silverquest conducted prospecting and soil sampling surveys over the area. The Harjay Exploration Co Ltd. tied on the PILLOW 1-11 claims to the west in 1987 and performed prospecting and sampling in 1988.

Archer, Cathro and Associates (1981) Ltd. re-staked the showing as the KLU 1-24 claims in 1994 and the KLUX 1-26 claims in 2000, on behalf of the Donjek Joint Venture, comprised of Expatriate Resources Ltd. and Strategic Minerals Ltd (Yukon Minfile, 2006). All but the KLUX 13-16 claims were allowed to lapse before the joint venture performed rock sampling and prospecting on the remaining four claims in 2001. The claims were transferred to Expatriate Resources in 2002 and then to StrataGold in 2003.

4.4: History of the Ant Block area

Only minor exploration has occurred within the present confines of the Ant block. The most significant work occurred at the Chair gold prospect, a strongly gossanous occurrence along the eastern flank of Chair Mountain. This was first staked as the ICE claim(s) in 1966 by D. Backstrom, and then re-staked as the BILLY claim(s) in 1980 by K. Gruber. It was re-staked as the RAIN claims in 1982 by Harjay ECL which re-staked it again in 1982 as the CHAIRGOLD claims. In 1988 B. Harris staked the SLUMP claims to the east. Exploration uncovered pyritic quartz veining hosting minor copper mineralization, as well as strongly altered intrusive rock. Exploration on the SLUMP claims revealed quartz-barite veining with minor gold, and minor copper-lead-zinc veining.

The only other noteworthy occurrence prior to the 2006 season is the Yellow showing, staked as the YELLOW and PL claims by Harjay ECL in 1987, which performed hand trenching later that year. Exploration revealed pyrrhotite and chalcopyrite as massive clots and fracture fillings in a 15-metre wide shear zone crosscutting an ultramafic sill; assays returned low nickel and platinum-group metal values.

5.0 Geological Setting

The majority of the following section was taken from the J. Pattison compilation.

5.1 General Geology

The White River Nickel Project area extends covers a 29 kilometre long section of the Kluane Mafic-Ultramafic Belt hosting the White River Intrusive Complex (WRIC). The latter is situated on the northwest edge of the Wrangellia Terrane of the Canadian Cordillera, just west of the regional scale Shakwak transpressional fault. The Pennsylvanian to Triassic Wrangellia Terrane, together with the Alexander Terrane, forms part of a package of accreted terrane, bounded by the Shakwak Fault to the east. This is considered as the second major accretional event, occurring west of the Yukon-Tanana Terrane, itself representing the first major accretional event

The Kluane Mafic-Ultramafic belt is the second largest belt of nickeliferous intrusions in North America. Only the Circum-Superior belt is larger. The Kluane belt extends from east-central Alaska, through the Yukon and into northern British Columbia and contains numerous mafic-ultramafic intrusive complexes. The intrusions, occurring as sills and lenticular bodies, are believed to represent subvolcanic magma chambers that fed overlying basalts of the Triassic Nikolai Group. Each intrusive complex typically has a peridotite-dunite core and a thin gabbroic margin. The intrusions contain numerous Ni-Cu-PGE occurrences including the past producing Wellgreen Mine located in the Quill Creek mafic-ultramafic complex 110 km southeast of the Canalask area.

In the project area, the northwest-southeast trending, steeply west-dipping Pennsylvanian to Permian Skolai Group comprises the oldest rocks of the Wrangellia Terrane. The Skolai Group is subdivided into two major formations: the older Station Creek and younger Hasen Creek formations. The Station Creek Formation consists mainly of andesitic and basaltic volcanics grading upwards to fine to medium grained tuffs, forming a sequence about 1,000 metres thick (Hurlbut, 1997). Campbell (1981) estimated an age range of Upper Mississippian to Lower Permian, based on conodont locations. The overlying Hasen Creek Formation consists of chert, black shale, sandstone, limestone and minor conglomerate forming a sequence to 800 metres thick deposited under subaqueous conditions of varying water depths. Sill-like gabbroic units occurring throughout the Hasen Creek Formation are interpreted to be of Lower Permian age.

The WRIC has been emplaced largely along or near the contact of the Hasen Creek and Station Creek formations, with the latter forming the northeastern footwall to the complex. The intrusion generally ranges in thickness from 100-300 m, strikes at 135° and dips to the southwest at 50° to 90°. At a length of about 20 kilometres, this is the second largest mafic-ultramafic intrusion in the Kluane Mafic-Ultramafic belt.

The Nikolai Group unconformably overlies the Hasen Creek Formation. This sequence attains a thickness of about 1,000 metres, and consists of basalt flows, including flood basalts with minor interbedded limestone (Hulburt, 1997). At some locations, a fossiliferous carbonaceous shale horizon forms the base of the Nikolai Group units (Hulburt, 1997). It contains *Daonella* bivalve fossils indicating that the strata are Middle Triassic in age, and thus a member of the Nikolai Group. The base of the volcanic pile consists of volcanic breccia and pillow breccia up to 100 m thick. The Nikolai flows are thin (2 to 10 m) and vesicular. The Nikolai Volcanics and WRIC are considered to be coeval.

Units of Nizina and Chitistone limestone occur throughout the belt as massive lenses ranging from several hundred metres to less than 30 metres in thickness. Locally abundant microfauna indicate deposition during Upper Triassic times. McCarthy Formation limestones, also Upper Triassic in age, overlie the Chitizone limestones where the latter units are at their maximum thickness.

Numerous Lower Cretaceous intrusions referred to as "Kluane Range Intrusions" occur in the project area. These consist largely of hornblende granodiorite and diorite (Muller, 1967).

5.1.1 The White River Intrusive Complex

This section was provided by J. Pattison, largely after Hulbert, 1997.

The WRIC is relatively well exposed on Miles Ridge west of the White River where it occurs as a sill-like body of ultramafic and mafic rocks 100 to 150 m thick dipping about 50° to the southwest. In this area neither the WRIC nor the surrounding rocks appear to be folded, nor does there appear to be significant normal faulting. All intrusive, extrusive and sedimentary lithologies face southwest (Hulbert, 1997). The northern margin of the WRIC represents the basal footwall contact zone while the southern margin delineates the upper hanging wall intrusive contact. The intrusion itself is comprised mostly of peridotite and dunite. There is insufficient bedrock exposure to map out zonation within the intrusion; however, where the basal contact is exposed a narrow (< 3 m wide) gabbroic phase commonly occurs. The gabbro is medium to coarse-grained, highly oxidized and often contains at least minor amounts of pyrrhotite and chalcopyrite. A quartz-carbonate alteration halo roughly 50 m wide envelopes the WRIC. It is derived from mafic-ultramafic rocks plus some of the adjacent wallrocks. Rocks within this halo have a fine-grained waxy grey to buff coloured matrix that weathers orange, and are commonly laced with thin quartz and carbonate veins. Fine disseminations of pyrite are present locally. Numerous small Ni-Cu-PGE sulphide showings occur along the basal contact.

The WRIC is poorly exposed on the east bank of the White River. Based on magnetic surveys and drill records, it is interpreted as being 250 to 600 m wide, striking at 120° and dipping steeply to the southwest. It is predominantly ultramafic in composition and

appears to possess a crude cumulate stratigraphy (Hulbert, 1997). A discontinuous gabbroic phase is developed along the basal (northeast) contact. This contact has been drill tested at relatively shallow depths at 60 to 120 m intervals along a strike length of 1.4 km. The only significant intersection was in hole VQ-7 which intersected 0.76% Ni and 0.24% Cu over 3.05m in the basal gabbroic phase of the intrusion.

At its southeast end of the WRIC appears to bifurcate, possibly due to folding, into two sill-like horizons.

5.2 Property Geology

5.2.1 Geology of the Canalask/ Pole area

The portion of the Canalask project area adjacent to the east bank of the White River is underlain by an east-southeast trending 200-metre thick unit of the WRIC. Year-2006 mapping indicates this is comprised primarily by peridotite with local relict olivines and trace sulphides, with a narrow gabbro unit along the north (footwall) contact. Footwall stratigraphy outbound of the gabbro unit consists of Station Creek Formation fine grained andesite, with limestone and quartz-carbonate altered units and an outcrop of chert identified roughly 200 metres north-northeast of the footwall contact (Map 3a). The Main and Footwall zones of the Canalask deposit are hosted by brecciated and altered albitized andesite tuffs intercalated with hornfelsed argillite and limestone units (Pattison, 2005). The narrow sedimentary units mapped in 2006 likely represent the eastern extension of the host unit of the Main Zone mineralized horizon.

The hanging wall area of the WRIC near the White River was not mapped in 2005 or 2006; however, earlier mapping has identified this as being underlain by Station Creek volcanics.

The WRIC unit was previously interpreted through airborne magnetic surveying to widen to the southeast, suggesting widths to 600 metres in the Pole area. The Pole grid, which extends from 1.5 to 3.2 km east-southeast of the Canalask deposit, underwent detailed geological mapping along newly cut grid lines extending across the interpreted southeast strike extension of the WRIC. This mapping led to discovery of a narrow east-southeast trending dunite unit in the western Pole grid area roughly along projected strike; this is the first known confirmed identification of ultramafic mineralization in this area. This unit is bounded to the south (footwall) side by Hasen Creek Formation chert and shale – mudstone fine clastic sediments, intercalated with abundant narrow gabbroic units that include crystal tuffs. The dunite unit was not identified southeast of L5200E (Map 4a).

Mapping results by Falconbridge Ltd. indicate that the northeastern portion of the grid is underlain by Station Creek Formation weakly chloritic andesitic tuffs and flows, commonly foliated, with localized horizons of carbonate alteration. Exposures to the northwest are sparse; however similar andesite, locally weakly mineralized, occurs along

"Nick Creek" (unofficial name) near L5200E, suggesting that Station Creek andesites comprise the footwall stratigraphy of the dunite unit.

Mapping also revealed that Hasen Creek sediments extend at least somewhat beyond L 6450E, and likely to L6650E. These include bedded limy conglomerate to limy sandstone units; an outcrop at L 5800E revealed east-west striking, steeply north dipping coarse limy clastic sediments, younging to the north. A unit of gabbroic tuff, including crystal tuff (Unit 4 on Map 4a) is designated as part of the Hasen Creek formation, due to similarity to small intercalated gabbro units within fine clastic sediments in western areas. Basalt – andesite tuffs to the south, locally moderately chloritic with localized epidote alteration, have been mapped as Nikolai Volcanics (Unit 6, Map 4a). A unit of andesite – basalt tuff (Unit 1), with a composition "intermediate" between Station Creek and Nikolai volcanics occurs roughly along the interpreted Hasen – Station Creek contact; this has not been designated to a specific pre-recognized formation.

All units except for the dunite show localized steeply dipping foliation, extending east-west to east-southeast, roughly paralleling stratigraphy, although dips extend variably to the north and south.

5.2.2 Geology of the Onion Block

The Onion project area, including all land along the White River Intrusive Complex between the White River and the northwest end of the claim block, is underlain by a continuation of stratigraphy at the Canalask deposit area. The WRIC itself occurs as a continuous northwest-southeast striking unit, roughly 150 - 200 metres wide in southeastern areas, which widens to about 300 metres in the area of the Onion showings. The stratigrapic setting is most pronounced in the Onion area, with the WRIC bounded both on the hanging and footwall sides by 10 to 20-metre wide zones of strong quartz-carbonate alteration, with calcite +/- quartz vein stockworking. The footwall zone occurs as a pronounced ridge, comprised mostly of altered andesite and minor gabbro of the WRIC. Station Creek Formation andesites extend farther, to the limit of exposure to the northeast (downhill). The southwest (hanging wall) side is comprised mostly of porphyritic, weakly chloritic Nikolai Formation basalt, with lesser limestone units.

Year-2005 and 2006 mapping by Falconbridge focused on the Pix showing area and the WRIC between the Onion SE and Sax showings (Map 3a). The WRIC remains unsubdivided in the Pix area, although some serpentinization occurs. However, it was mapped as dunite in the area between the Onion and Sax showings. An exposure within the footwall area just south of the Onion SE showing was mapped as "sediments". The gabbro unit within the WRIC was identified just southeast of the quartz-carbonate-altered horizon during 2005 mapping.

5.2.3 Geology of the Pic block

Limited mapping in 2006, largely of outcrops along small northeast-flowing streams, essentially confirmed earlier detailed good-quality mapping of the Pic block by Expatriate Resources and earlier workers. Previous mapping revealed that the WRIC, here primarily peridotite, occurs as a single unit about 125 metres wide in northwestern areas, which bifurcates into two narrow units, each roughly 30 – 50 metres wide, in southeastern areas (Map 5a). Host rocks along the footwall are primarily Station Creek Formation andesites. The southwest (hanging wall) side of the upper (southern) peridotite horizon consists of elongate units of limestone and argillite, within andesitic to basaltic volcanics. The sedimentary units suggest Hasen Creek formation stratigraphy, and thus a southeastern continuation of the host setting at the Canalask area.

All units strike northwest-southeast; however previous interpretation revealed the presence of tight folding, with several synclinal and anticlinal axes parallel to stratigraphic trend. An antiformal axis was interpreted to extend between the two ultramafic units, suggesting these are the two limbs of a single folded unit.

Year-2006 mapping along "Lunchbox Creek" (unofficial name) led to discovery of a small pyroxenite lens in hanging wall stratigraphy about 300 metres southwest of the southern horizon. No previous documentation of this is known. This occurrence suggests the possibility of more ultramafic horizons, likely narrow, in the Pic block. Mapping also revealed a chloritic gabbro unit about 75 metres to the northeast, along the footwall side of the aforementioned limestone unit. Mapping elsewhere confirmed previous mapping results.

5.2.4 Geology of the Ant Block

Preliminary geological mapping and compilation by the Yukon Geology Survey indicates that the property is underlain by a broad east-southeast trending package of early – mid Triassic Nikolai Formation basalt to andesitic flows, commonly amygdaloidal and locally feldspar porphyritic, intercalated with tuffs of similar composition (Map 2a). Several sizable sedimentary units, consisting of thin to medium bedded, locally thick-bedded, fine clastic sediments and lesser limestone including fossiliferous limestone occur within the volcanic package. The widest of these occurs along the western property boundary. A second sedimentary package occurs along the entire southern margin of the volcanic package, roughly paralleling the southern property boundary. Bedding in western portions of this unit strikes east-southeast, parallel to stratigraphy, and is steeply south dipping to vertical. However, bedding orientations vary considerably across the property, suggesting broad folding, locally apparent at outcrop scale.

At least two gabbroic units, designated as subvolcanic equivalents of Nikolai Formation volcanics, have been identified. One, occurring along Sanpete Creek in the extreme southeastern portion of the property, consists of melanogabbro bounded by amygdaloidal basalt with hematite and carbonate alteration. The other, occurring in the south-central

property area, extends roughly three kilometers ESE – WNW, and is at least one kilometer wide. Gabbroic rocks are commonly serpentinized, particularly along fault zones, resulting in a deep greenish-black colouration. Although melanocratic, the colour differs from the jet black colour of true ultramafic rocks. Minor but locally abundant north-south trending ultramafic dykes occur along "Marilyn Creek" (unofficial name).

A single granite stock, called the "Marilyn Creek stock" (unofficial name), occurs at the eastern end of the south-central gabbroic unit. This has been classed as a member of the mid-Cretaceous Kluane Intrusive Suite. Felsic dykes were previously mapped at the "Manson Brook" occurrence (also called the Chair prospect); however year-2006 mapping suggests the prospect is hosted by strongly silicified and argillically altered basalt, as diminishing alteration intensity reveals the host rock is recognizably basaltic.

A single exposure of olivine gabbro was noted about 0.5 km northwest of the Manson Brook occurrence. Atomic absorption analysis revealed weakly elevated nickel and strongly elevated chrome content, suggesting an ultramafic mineralogy. The "Yellow" showing was not located in 2006.

6.0 Deposit Types

Two deposit types comprise the focus of exploration in the White River Intrusive Complex area: deposits formed by "magmatic segregation" within a melt, and "epigenetic" hydrothermal and/or replacement style deposits. The former is typified by the Wellgreen deposit in the Burwash area; the latter is typified by the Main and Footwall zones of the Canalask deposit.

Magmatic cumulate deposits form during gradual precipitation of silicate and sulphide minerals from a mafic or ultramafic magma in a subsurface or surface environment. These may occur both as magma chambers (large, roughly spherical bodies) and as "feeders", which are narrow, elongate bodies formed from injection of magma into permeable environments that may or may not parallel pre-existing stratigraphy. The Wellgreen deposit is an example of the latter setting.

The parent magma is primarily of an "ultramafic" composition, with low silica and high magnesium and iron contents. Lithification from magma occurs progressively over time, commonly with discrete lithological zones that are increasingly magnesium and iron rich inbound from sill margins. A typical zonation, also observed at the Wellgreen deposit southeast of the project area, consists of marginal gabbro units, followed inbound by pyroxenite, peridotite and centered on dunite (> 90% olivine) units. Sulphide mineralization also may occur, and is "immiscible", prone to precipitation at specific times during dyke formation history. Important sulphide minerals are pyrrhotite (a barren iron sulphide), and chalcopyrite and pentlandite (copper and nickel sulphides respectively). Mineralized horizons are commonly enriched in platinum-group metals (PGMs), which can also occur within separate horizons, or "reefs".

More than 90% of the sulphide mineralization at Wellgreen occurs as disseminations within the marginal "footwall" gabbro zone (Hulbert, 1997), indicating that the sulphides precipitated at the same time as the gabbro. This footwall zone is within basal marginal areas of the sill, which is northwest-southeast striking and steeply west-dipping; thus footwall mineralization occurs along the northeast side of the sill. Mineralization is densest near the gabbro – footwall host-rock margin, decreasing progressively towards the interior of the dyke. Lenses of massive sulphide mineralization occur as well. The Wellgreen deposit hosts several major gabbro-hosted zones.

Epigenetic deposits consist of skarn and replacement style mineralization, as well as vein, fracture and breccia-hosted sulphides. Here, the metals and sulphur complexes are transported within hydrothermal fluids, which are essentially composed of metal ion-bearing hot water, usually with other impurities including silica, carbon dioxide and other vapour-based "volatiles". Under favourable conditions of structural preparation, most commonly fault or fracture zones or permeable rock units, these acidic fluids are able to migrate from the intrusive-host rock contact, causing formation of mineralized zones within favourable host rock depositional environments. If the host rock is calcareous,

"skarns" may form, with new minerals formed from the reaction of pre-existing calcareous minerals with silica-enriched fluids.

Replacement-style mineralization occurs within reactive rock units, most commonly with a calcareous matrix, including limestone units. Here, metal-bearing and alteration minerals have replaced pre-existing minerals, resulting from introduction of ion-rich acidic fluids and subsequent dissolution of the original minerals and emplacement of the introduced ions into the original mineral lattice, forming new minerals. Vein and fracture-hosted mineralization occurs in strongly fractured to brecciated host rock which is less reactive, restricting deposition to zones of pore space, and inhibiting the formation of pervasive mineralization.

Within the Kluane Mafic-Ultramafic belt, zones of epigenetic mineralization tend to occur within the footwall host rock, up to 200 metres from the ultramafic sill contact. The mineralized zones at Canalask occur within brecciated and fractured andesites, displaying characteristics both of skarn and replacement-style deposits as well as vein and fracture-controlled deposits. Ultramafic host rocks typically contain up to 0.2% silicate nickel, which has a strong affinity with chrome.

Observations and results of the 2005 field visits to the White River Intrusive Complex indicated that it has strong potential to host sizeable nickel – copper deposits. The WRIC is part of an enormous mafic-ultramafic open system, interpreted to be the feeder system for overlying Nikolai Volcanics flood basalts. The subdued internal zonation indicates a dynamic flow environment; the thick alteration halo suggests a large volume of ultramafic magma passed through it. Numerous moderate to high-tenor nickel sulphide showings occur along the length of the intrusion, indicating widespread contamination and sulphide segregation (Pattison, 2005).

7.0 Mineralization

7.1 Canalask area Mineralization

Two major zones of fracture-controlled to massive and semi-massive nickel-copper sulphides, the Main and Footwall zones, comprise the Canalask deposit.

The Main Zone occurs roughly 150-200 metres north of the footwall contact of the WRIC within altered albitized andesitic tuffs, intercalated limestone and hornfelsed argillite. The zone is estimated to contain 390,235 tons of 1.35% Ni (T. Antoniuk, 1968, FL file R-11664), although Hulbert (1997) suggests that, with dilution factored in, a conservative resource estimate is of 1,800,000 tonnes grading 0.86% nickel. The mineralization is structurally controlled and consists of disseminated, vein, fracture and breccia fillings and semi-massive to massive irregular replacement-style pyrrhotite, pyrite, chalcopyrite and pentlandite. Nickel is concentrated in disseminated and to a lesser extent fracture-controlled sulphides. Massive sulphides however typically contain some copper but very little nickel.

Sulphide mineralization in the Canalask area tends to be slightly enriched in gold; a setting typical of replacement style mineralization. Year-2006 sampling by Falconbridge revealed low chrome values with high nickel values, suggesting that mineralization is epithermal, rather than magmatic. The Canalask deposit hosts background PGM values.

The parallel Footwall Zone is located about 50 metres north of the Main Zone. It is roughly similar in style to the Main Zone but the intensity of mineralization is weaker (Pattison, 2005).

A showing of high grade copper mineralization occurs about 300 metres to the east along strike of the Main Zone. Much of the footwall contact of the WRIC east of the Canalask, as well as the footwall stratigraphy directly east of the Canalask deposits, was drilled by the Nickel Syndicate in 1973. Only Hole VQ-7 (Falconbridge files R-11671 and R-11673) intersected substantial mineralization, grading 0.76% Ni and 0.24% Cu over 3.05 metres, including 0.12 metres grading 1.32% Ni and 0.32% Cu. The mineralization occurs at the footwall contact of the WRIC in the marginal gabbroic phase of the intrusion. This is important, as it signifies a Wellgreen-like magmatic setting rather than a Canalask style epigenetic setting.

7.2 Pole Area Mineralization

No actual nickel-copper occurrences have been identified on the Pole grid, although fairly abundant pyroxenite and peridotite float occurs along the length of Nick Creek. A piece of mineralized float found in the Pickhandle area by Canalask Nickel Mines in

1953 and now covered by the Pole grid assayed 0.56% Ni and 6.55% Cu (Falconbridge file R-11659). Follow-up work in 1954 failed to locate further mineralization.

A soil geochemical grid designed to test the east-southeast extension of the dunite horizon (Section 5.2.1) failed to delineate its extension. However, it identified a moderate coincident nickel-chrome +/- copper anomaly along the southwestern ends of the surveyed portions of Lines 5600E through 6650E, roughly from 5600N through 5750N (Maps 4b-d). These are associated with a very slight palladium enrichment, with values exceeding 0.01 g/t. Samples along L 6200E, from 5650N through 5750N showed elevated sulphur content, utilizing the S-IR08 analytical method, ranging from 0.28 to 0.31%, although sulphur values utilizing the ME-ICP-61 method showed no significant sulphur elevation (Appendices 4 a-d). Much of this area is covered by muskeg along a northeast trending slope, suggesting the anomaly may also have been transported a short distance downslope from its source to the southeast.

A second nickel anomaly in soil was identified along L5800 E from 5950N through 6100N, open to the north. Here nickel values are again coincident with high chrome values and weakly elevated palladium values, suggesting an ultramafic horizon. However, background sulphur values were returned and the anomaly does not extend onto neighbouring lines. The anomaly is coincident with some pyroxenite float, and a silt sample from Nick Creek returning 231 ppm Ni.

Silt sampling revealed anomalous nickel values along the entire extent of Nick Creek. The most upstream sample, taken along L 6650E, returned 360 ppm Ni and 1480 ppm Cr, indicating a source farther upstream to the southeast. The ultramafic horizon is likely to extend beyond the southeast limit of the Pole grid.

A composite grab sample of quartz vein rubblecrop collected by Falconbridge at about 5250E, 6400N returned a value of 0.726 g/t gold.

Polestar Exploration Inc. collected talus and soil samples from the area in 1987. Talus samples contained up to 2,142 ppm Ni and soil samples contained up to 1,260 ppb Au and 2,250 ppm Ni (Pattison, 2005).

7.3: Onion Block Mineralization

The Onion block hosts numerous documented small magmatic sulphide occurrences, hosting massive to disseminated sulphides. From northwest to southeast, the major ones are: the Onion NW, Discovery, Onion SE, Sax, Pix, Cessna, Cessax and Polestar showings (Map 3a). The historic summaries are by J. Pattison (2005).

Onion NW

Little information is available for the Onion NW showing. It is described as consisting of thin (<10 cm thick) bands of semi-massive to massive, weakly foliated bands of

pyrrhotite, pentlandite and chalcopyrite in the marginal gabbroic phase of the WRIC. No geochemical information is available and the location of the showing is very approximate. Geologists from Uravan Minerals, the last company to work the area, were unable to locate it (Pattison). The showing was not visited by Falconbridge in 2005 or 2006.

Discovery

A small section of deeply weathered marginal gabbro is exposed over an area of about 10 square metres. The gabbro contains thin (<10cm) bands of semi-massive pyrrhotite, pentlandite and chalcopyrite. The showing has been blasted; a sample of fly-rock with massive sulphides (28.1% S) assayed 4.69% Ni, 0.60% Cu, and 6.82 g/t total PGMs.

Chip sampling in 2005 returned nickel values from 1,295 Ni with 105 ppm Cu, to 19,000 ppm (1.90%) Ni with 6,550 ppm (0.665%) Cu. Sampling also revealed strongly anomalous platinum values, ranging from 46 to 1,150 ppb Pt, similarly anomalous palladium values from 11 to 3,390 ppb Pt, most commonly in the 200 through 1,675 ppb range, and anomalous gold values from 3 to 116 ppb Au. A sample from a small sulphide occurrence about 40 metres into the footwall returned an elevated copper value of 300 ppm with background nickel and PGM values.

Onion SE

The showing consists of strongly sheared and altered mafic-ultramafic rocks containing malachite and minor limonite staining but no visible sulphides. Samples from the showing collected by Uravan Minerals in 2001 contain up to 6.96% Ni, 0.02% Cu, trace PGMs, 3.08 g/t Au and only 0.10% S. Polished section studies indicate that the nickel is hosted in niccolite (Pattison, 2005). Sampling in 2005 between the Onion SW and Sax showings returned nickel values in the 0.20% range, consistent with silicate nickel.

<u>Sax</u>

The showing occurs atop a long ridge that is perpendicular to the WRIC. A hand excavated trench on the ridge exposes the marginal gabbro phase of the intrusion and the adjacent quartz-carbonate alteration halo. The gabbro is not as strongly oxidized as it is at the Discovery showing and minor disseminated and net-textured sulphides to 1 % occur. A 2.10 m chip sample across the gabbro averaged 0.35% Ni, 0.09% Cu, 0.16 g/t Pt and 0.32 g/t Pd (Pattison, 2005).

<u>Pix</u>

The showing consists of a small outcrop where the footwall contact of the WRIC is exposed over a strike length of about 5 m. A 0.8 m chip sample across the contact assayed 0.45% Ni, 0.10% Cu, 0.22 g/t Pt and 0.63 g/t Pd. The sample contained 1.87% S (Pattison, 2005). Numerous samples were obtained of ultramafic material in 2006

returning typical silicate nickel values of about 0.25% Ni, with low copper values and weakly elevated platinum and palladium values.

<u>Cessna</u>

Limonitic gabbro in contact with quartz-carbonate altered footwall rocks is exposed at the Cessna showing. A 4.0 m chip sample across the contact assayed 0.21% Ni, 0.18% Cu, 0.14 g/t Pt, and 0.63 g/t Pd (Pattison, 2005). This showing has not been visited by Falconbridge Ltd.

Cessax

The showing is located in extremely steep terrain and consists of limonitic gabbro at the footwall of the WRIC. A grab sample of the gabbro assayed 0.38% Ni, 0.08% Cu, 0.35 g/t Pt, 0.41 g/t Pd and 0.04% S (Pattison, 2005). This showing has not been visited by Falconbridge Ltd.

Polestar

A 1.5 m chip sample of leached and oxidized gabbro near the footwall contact of the WRIC assayed 0.21% Ni, 0.18% Cu, 140 ppb Pt and 420 ppb Pd (Pattison, 2005). This showing has not been visited by Falconbridge Ltd.

Year-2006 exploration led to discovery of several small skarn or replacement-style occurrences, one with a copper value exceeding 1.0%, within Station Creek footwall andesites. These likely represent epigenetic Canalask-style mineralization.

7.4: Pic Block Mineralization

In 1987, Silverquest Resources conducted prospecting and soil sampling surveys over the present Pic project area. There were many weak to moderately anomalous Pt (20-50 ppb), Pd (20-35 ppb) and Ni (100-2,220 ppm) values in the soil results. Elevated nickel values are coincident with the peridotite horizon, and likely represent silicate nickel. Grab samples of serpentinized peridotite with up to 2% disseminated pyrrhotite contained up to 3,100 ppm Ni, 500 ppm Cu, 75 ppb Pt, and 160 ppb Pd. A specimen of mineralized volcaniclastics with pyrrhotite and chalcopyrite assayed 1.2% Cu but its location was not documented.

Numerous small chalcopyrite-pyrrhotite occurrences were previously mapped and are shown in the Pic block compilation map (Pattison, 2005, Map 5a). These apparently represent both magmatic-style and epigenetic, Canalask-style mineralization. Sampling of the small pyroxenite pod revealed moderately elevated copper values, well above copper values in unmineralized pyroxenites. Year-2006 prospecting of the known peridotite units along Lunchbox Creek led to discovery of a small limonitic occurrence

also returning elevated copper values. Nickel values here are somewhat higher than those of unmineralized ultramafic units and platinum and palladium values are moderately anomalous. Sulphur levels attain values of 2.49%, indicating this is an occurrence of magmatic mineralization, although very small (Appendix 5b-d). No other occurrences were evaluated in 2006.

7.5 Ant Block Mineralization

No obvious ultramafic-hosted mineralization or sizable ultramafic boulders were identified, although minor vein-hosted and disseminated chalcopyrite occurs throughout the property.

Two occurrences with the potential to host sizable gold occurrences were discovered. One of these, the Marilyn Creek Stock, has undergone moderate to strong orange ankeritic alteration and pyritization, and hosts abundant quartz veining which is commonly chalcopyrite-bearing. Granite boulders showing vein or fracture-controlled silicification and pyritization were located along Marilyn Creek. Placer claim posts and minor past workings indicate the creek had undergone exploration for placer gold, within, but not upstream, of the stock.

The other occurrence is the "Manson Brook occurrence", consisting of strongly silicified, argillically altered and limonitic basaltic flows along the eastern flank of Chair Mountain. Minor chalcopyrite-bearing occurrences exist within the broad alteration package, and within basaltic rocks along the northern margin. The Manson Brook occurrence occurs as two steep slopes separated by a flat bench (hence the "chair"), indicating a wide although linear, east-west trending unit. This unit is up to 150 metres wide and extends at least 300m east-west, although exposures of similar alteration several hundred metres farther west suggest a much greater strike length. A pronounced glacial moraine of similarly mineralized boulders extends east to Sanpete Creek.

8.0 Exploration Program

The 2006 exploration program consisted of line cutting of the Pole grid, cut line refurbishment of the Canalask and part of the Onion grid, and "UTEM-3" electromagnetic surveying of these three grids. The program also included detailed geological mapping of most of the Pole grid, soil sampling at a 50-metre station spacing along central portions of this grid, and some silt sampling. Some mapping and rock sampling was done near the Canalask deposit area.

On the Ant block, the program consisted of reconnaissance-style silt sampling and geological mapping along most major streams. Silt samples were taken at 250-metre spacings along the main streams, and of larger tributaries sufficiently upstream from the confluence to avoid contamination. Some detailed mapping and sampling were done at the Marilyn Creek stock and the Manson Brook occurrence; at the latter, two short soil sampling lines with a 25-metre station spacing were completed across each of the steep slopes.

Limited geological mapping, prospecting and rock sampling was done on the Pic block, as well as silt sampling of many of the small north-east flowing streams. Rock sampling and limited geological mapping and silt sampling was also done on the Onion block in 2006.

Table 2 lists surface work done in 2006 per project area. The following sections describe detailed work programs and results per project area.

Table 2: 2006 Work Performed, White River Nickel Project

Project Area	Line Cuttin g (km)	Line Refurbishmen t	UTEM Surveyin g (km)	No. of Rock Sample	No. of Soil Sample	No. of Silt Sample
		(km)	<i>S</i> ()	s	s	s
CanAlask/Pol	16.65	26.80	35.275	30	159	7
e						
Onion		11.05	11.050	40		10
Pic				26		24
Ant				68	14	210
Totals	16.65	37.85	46.325	164	173	251

8.1 Exploration Programs by Project Area

8.1.1 2006 Exploration, CanAlask/Pole Project area

Year-2006 exploration at the Canalask area consisted of refurbishment of 26.80 line kilometers of previously cut line, followed by 22.35 line kilometers of UTM electromagnetic surveying. The program included limited geological mapping and some

rock sampling, the latter focusing on due-diligence sampling of surface expressions and small tailings piles of the Main Zone of the Canalask deposit. Grab sampling returned nickel values from 139 ppm to 4.08% nickel with background PGM values and background to slightly elevated gold values. Sampling of peridotite within the WRIC 200 to 300 metres to the south returned chrome and nickel values typical of unmineralized ultramafic rocks, although PGM values are elevated, ranging from 0.027 to 0.094 g/t platinum (Pt) and 0.035 to 0.208 g/t palladium (Pd). PGM values appear to increase in sheared material, suggesting some remobilization.

Some rock sampling was also done at an epithermal sulphide showing about 300 metres along strike of the Main zone; these returned copper values of 27,500 ppm (2.75%) and 1,335 ppm respectively with background nickel and PGM values and weakly elevated gold values (Appendices 4a-d).

The UTEM-3 electromagnetic survey revealed a weak conductor extending east-southeast across the south-central portion of the Canalask grid. The largest response is found towards the centre of the grid, on lines 10488E through 10998E (Map 3a); this becomes less conductive both to the east and west. Preliminary interpretation by Lamontagne Geophysics suggests this conductor occurs about 300 metres below surface and dips at 20° to the south-southwest.

Plotting of this conductor onto existing geological maps indicates it extends east-southeast almost directly from the Main Zone of the Canalask deposit. The western end of the strongest portion, at L 10448, is slightly north of Hole VQ-7, which returned 0.76% nickel and 0.24% copper within the gabbroic footwall horizon of the WRIC. Several holes drilled nearby along the footwall contact of the WRIC in 1997 by Expatriate Resources returned elevated copper and nickel values, of which Expatriate concluded that much of the nickel occurs in silicate form and is thus unrecoverable (Carne, 1997). However, Hole 97-076, collared about 70m to the east, intersected a 9.00m interval returning 0.30% Ni and 0.12% Cu (Carne, 1997), the latter indicating sulphide mineralization.

At the contiguous Pole project area, 16.65 kilometers of line was cut, forming the Pole grid, which then underwent 12.925 line kilometers of UTEM surveying. Soil sampling using a 50-metre station spacing was done along lines 5000E and 5200E from BL 5000N to 5750N and 6000N respectively, and along central portions of Lines 5400E through 6650E respectively. This was done to identify the potential southeast extension of the dunite horizon (Sections 5.2.1 and 7.2) within the west-central portion of the grid. No anomalous geochemical signature signifying continuation of the dunite was detected; however, the survey identified a moderate coincident copper-nickel-chrome anomaly along the southwestern ends of the surveyed portions of Lines 5600 through 6650E, roughly from 5600N through 5750N (Maps 4b-d). Values here range from 106 ppm Ni with 223 ppm Cr to 435 ppm Ni with 706 ppm Cr respectively. These are associated with very slight palladium enrichment, with some values exceeding 0.01 g/t. Weakly elevated copper values from 67 to 155 ppm were returned from the southwestern sampled limits of Lines 5600E and 6200E respectively. Results of sampling along L 6200E, from 5650N

through 5750N showed elevated sulphur content, utilizing the S-IR08 analytical method, ranging from 0.28 to 0.31%, although sulphur values utilizing the ME-ICP-61 method showed no significant sulphur elevation (Appendices 4 a-d). The anomaly occurs along a moderately south-east dipping slope, with muskeg and permafrost cover; metal values may be subdued and may have been transported a short distance from the southeast.

A second nickel anomaly in soil was identified along L5800 E from 5950N through 6100N, open to the north. Here, nickel values are again coincident with high chrome values and weakly elevated palladium values, suggesting an ultramafic horizon. Nickel values ranged from 349 ppm Ni with 700 ppm Cr, to 392 ppm Ni with 546 ppm Cr. Platinum and palladium values were above background, ranging from 0.006 to 0.011 g/t Pt and 0.014 to 0.017 g/t Pd. However, background sulphur values were returned and the anomaly does not extend onto neighbouring lines. The anomaly is coincident with some pyroxenite float, and a silt sample from Nick Creek returning 231 ppm Ni.

The UTEM survey across the Pole grid revealed a weak conductor extending northwest-southeast. This has been interpreted as representing a flat lying to weakly south-dipping conductor, with a more abrupt contact along the northeastern side (Lamontagne summary report, 2006). Plotting of this shows that its western end coincides exactly with the dunite unit along L5200E (Map 4a). Farther southeast, the conductor has a strong correlation with the northern limit of the coincident Ni-Cr +/- Cu anomaly delineated from soil sampling. This is most pronounced along L5600E and lines 6000E through 6650E, although the soil anomaly extends somewhat further north, possibly due to downslope transport (Maps 4b-d). The conductor is almost exactly coincident with Nick Creek (unofficial name) along lines 6450E and 6650E; an outcrop of strongly silicified brecciated basalt was located in 2006 along Nick Creek somewhat west of L6650E (Map 4a).

Plotting of the conductors on the Canalask and Pole grids indicates these are separate features, with the western end of the Pole conductor located about 500 metres south of the eastern part of the Canalask conductor. The Pole conductor extends across the entire Pole grid, likely extending beyond grid boundaries.

These conductors were identified through responses in the early time channels; late time channels were less responsive, suggesting the anomalies are very weakly conductive. This is particularly true in the Pole grid, where the proposed GPS survey was not done, resulting in large Channel 1 responses possibly due to geometrical errors (see Appendix 6, Lamontagne Geophysics).

8.1.2 2006 Exploration, Onion Project area

Year-2006 exploration consisted of 11.05 kilometers of picketed and cut line refurbishment, and 11.05 kilometres of UTEM surveying. Rock sampling was also done across the WRIC, mapped as dunite, somewhat south of the Onion SE showing. Results revealed background copper, and chrome and nickel contents suggesting silicate

mineralization. PGM values were elevated, ranging from 0.017 g/t Pt with 0.011 g/t Pd to 0.107 g/t Pt with 0.069 g/t Pd.

Sampling of dunite and peridotite within the WRIC roughly 400 metres northwest of the Sax showing also returned background copper with chrome and nickel contents suggesting silicate mineralization. PGM values ranged from 0.008 g/t Pt with 0.006 g/t Pd to 0.028 g/t Pt with 0.015 g/t Pd. Sampling of ultramafic rocks in the Pix area returned similar values to the above, with PGM values ranging from 0.020 g/t Pt with 0.013 g/t Pd to 0.087 g/t Pt with 0.096 g/t Pd.

Several small epigenetic mineralized occurrences were located in 2006 in the footwall andesites. Sampling returned a copper value of 2.01% from the same sample mentioned at the end of Section 7.3.

The UTEM survey, consisting of two loops along the WRIC, identified a weak conductor with similar characteristics to the Canalask conductor. A conductive feature extends northwest-southeast along both grids, again with a shallow southwest dip and a more abrupt northern contact. The conductor disappears beyond L2000N, near the northwest property boundary, and becomes less conductive south of L500S (Figure 3a, Appendix 6).

Plotting of the UTEM results suggest this is a single continuous conductor, extending roughly along the hanging wall side of the WRIC, about 200 metres southwest of the footwall contact hosting the known magmatic occurrences. The Lamontagne report concludes that the conductors occur about 300 metres below surface, and that responses are sufficiently conductive to suggest a long, slender shape of the conductive body. Again, late time channels were less responsive, indicating a weak conductor on the Onion grid.

8.1.3. 2006 Exploration, Pic Project area

Year-2006 prospecting of the known peridotite units along Lunchbox Creek led to discovery of a small limonitic occurrence also returning elevated copper values. Nickel values here are somewhat higher than those of unmineralized ultramafic units, ranging from 2,300 ppm Ni with 433 ppm Cu, 0.037 g/t Pt and 0.056 g/t Pd, to 2,900 ppm Ni with 547 ppm Cu, 0.037 g/t Pt and 0.043 g/t Pd (ME-MS81 ICP analytical technique). Reanalysis of the same samples using the AA-61 atomic absorption technique returned values of 2,090 ppm Ni with 173 ppm Cu, 0.047 g/t Pt and 0.061 g/t Pd to 3,750 ppm Ni, 610 ppm Cu, 0.035 g/t Pt and 0.046 g/t Pd. A sample taken somewhat downstream returned 0.071 g/t Pt and 128 g/t Pd. Sulphur levels attain values of 2.49%, indicating this is a very small magmatic occurrence (Appendix 5b-d).

Sampling by the ME-MS81 ICP technique of the small pyroxenite lens discovered in 2006 returned 2,120 ppm nickel, typical of silicate mineralization, but with 390 ppm Cu,

0.050 g/t Pt and 0.083 g/t Pd. Re-sampling by the AA-61 atomic absorption technique returned values of 2,200 ppm Ni, 246 ppm Cu, 0.037 g/t Pt and 0.047 g/t Pd respectively.

Sampling of the peridotite horizon about 1.0 kilometres to the south returned silicate-level nickel values, with slightly elevated copper values from 136 to 201 ppm Cu, and PGM values from 0.023 g/t Pt with 0.029 g/t Pd to 0.032 g/t Pt with 0.056 g/t Pd.

Silt sampling throughout the property area returned background to weakly elevated nickel and copper values, and near-background to background PGM values.

8.1.4 2006 Exploration, Ant Project area

Silt sampling at the Ant block revealed one trend of weakly anomalous nickel, chrome and copper values along a small creek east of Beaver Creek (Maps 2b-e, Appendix 2c). Nickel values ranged from 104 to 249 ppm, copper values ranged from 134 to 186 ppm, and palladium values ranged from 0.010 to 0.064 g/t. Platinum values were mostly <0.005 g/t, with one exception grading 0.023 g/t. This is the only notable potential ultramafic signature returned from the silt sampling on the Ant block. Fairly high background values of chrome and copper elsewhere likely result from a Nikolai Volcanic basaltic origin. A single rock sample from an exposure of olivine gabbro about 0.5 km northwest of the Manson Brook occurrence returned 319 ppm Ni with 673 ppm Cr by "AA-61" atomic absorption analysis, suggesting a possible ultramafic signature.

Silt sampling returned several strong gold anomalies. The most notable occurs downstream of the Manson Brook occurrence, where intermittent high values to 0.741 g/t Au were returned. Abundant glacial moraine material extends from the Manson Brook occurrence to Sannpete Creek, comprising a partial source for these anomalies. Rock sampling of the occurrence itself returned near-background metal values, with the exception of a rubblecrop sample of quartz vein float, which returned 0.402 g/t gold. Copper values are locally elevated, ranging from 8 to 819 ppm. Soil sampling directly across the steep mineralized faces returned weakly anomalous gold values, ranging from 0.003 to 0.036 g/t gold with background to 1.1 g/t silver values respectively.

At the Marilyn Creek stock, a composite grab of intrusive-hosted quartz vein material with minor copper mineralization in rubblecrop returned 1,485 ppm copper with 504 ppm arsenic. All other samples in the area returned low metal values. Sampling of serpentinized melanogabbro along stock margins returned low nickel and chrome values, indicating the gabbro is not part of the WRIC. One silt sample downstream of the stock returned 0.183 g/t gold; all others returned background gold values.

Two other gold-in-silt anomalies were identified; one in a small stream along the southwest property boundary, suggesting a source just within the property boundary, and the other along the lower reaches of Sanpete Creek in the northeastern property area. A small vein-style sphalerite occurrence is located just upstream of the aforementioned gold occurrence along the southwest property boundary. A composite grab sample of a small

quartz-carbonate vein in outcrop along Sanpete Creek in the northeastern property area returned 2,330 ppm copper.

8.2 Personnel

The following personnel were involved with the White River project:

Falconbridge Ltd:

Gordon Maxwell, Regional Geologist

Richard Nieminen, HBSc: Project Geologist

Mark Shore, Phd: Senior Project Geophysicist and co-manager

Chris Cockburn, HBSc: Field Geologist and co-manager

Brian Rowsell: Field Technician, prospector

Ian Hamilton: Field Technician

Neil Van Wychen: Seasonal Field Assistant

All-Terrane Mineral Exploration Services:

Carl Schulze, BSc, PGeo: Field Geologist and Qualified Person

Martin Paquette, Field Technician

Lamontagne Geophysics Ltd:

Owen Fernley: Crew Chief Richard Lahaye: Co-chief Andrew Ward: Technician Allan George: Technician

Line Cutting Services were provided by Coureur de Bois Ltd. of Whitehorse, Yukon, and managed on site by Francios Chretian.

Helicopter services were provided by Kluane Helicopters Ltd. and Guardian Helicopters.

9.0 Sampling Method and Approach

All geochemical sampling was subject to rigorous parameters, including detailed descriptions of each sample. Rock samples were obtained using a 22-oz Estwing rock hammer, and located in the field using a non-differential Global Positioning System (GPS) instrument. Samples were placed in plastic bags designed specifically for rock sampling. A tag with the unique sample number, supplied by ALS Chemex Labs, was placed in the bag; the sample number was written on both outsides of the bag using "Magic Markers". The sample numbers were also written on small metal tags using "scribes" or pens; the tags were attached to the sample locations in the field.

Rock samples were recorded as to location (UTM - NAD 83), sample type (grab, composite grab, chip, etc), exposure type (outcrop, rubblecrop, float, etc.), formation, lithology, modifier (for textural or structural descriptions), colour, degrees of carbonate presence and silicification, other alteration if applicable, economic mineralization including estimated amounts, date, sampler and comments (Appendix 2). Descriptions included type of analysis (i.e. Whole Rock vs. ICP). Chip samples were taken in areas of outcrop exposure to improve sample representability. Minimum sample weight was 0.5 kg, although samples tended to be larger than this.

Silt samples were also described as to location (UTM-NAD 83), percent fines, colour, stream grade, stream width, date, sampler, and comments, including type of sample; silt samples include mossmat samples.

Soil samples were recorded as to location (UTM – NAD 27 location), horizon, depth, slope angle, colour, presence of permafrost, vegetation type, surficial geology, fragment lithology (if known), percent organics, date, sampler and comments. If a particular parameter could not be determined, particularly fragment lithology, no record was made. Samples were preferably taken of B-horizon material, although sampling of A horizon soil was done where B-horizon material was unavailable. This was preferable to omitting the sample. Minimum original sample weight was 0.25 kg. Sample numbers supplied by ALS Chemex Labs were written with a scribe or pen and tied on to the station picket. Samples were placed in kraft bags, with a tag supplied by ALS Chemex showing the unique sample number placed in the bag, and the sample number written in "Magic Marker" on both sides of the bag. The bags were then dried as much as possible before shipping. Minimum weight of soil and silt samples was 0.25 kg, although most were heavier than this.

Variability in results of soil sampling may be caused by depth of overburden, slope angle, and outcrop exposure, with lower values expected in flat areas with thick overburden.

Field data was entered into Microsoft Excel spreadsheet format, and later matched with analytical results. This process was continually re-checked to ensure that sample descriptions are associated with the correct results.

The author cannot verify the adequacy and quality of historical sampling, sample preparation, security and analytical procedures for work performed before 2004; the author was not involved in past exploration.

10.0 Sample Preparation, Analysis and Security

All rock samples were placed in thick plastic industry standard sample bags, sealed with thick plastic serrated "Zap Straps" and sent in a similarly sealed rice bag to ALS Chemex Labs of North Vancouver, B.C., a certified analytical laboratory. Sealed rice bags were personally handed to the courier, Greyhound Bus Lines, by the qualified person or company representative, and were delivered by the courier directly to ALS Chemex. All rock samples were crushed to ensure that a minimum of 70% of the material was less than 2.0 mm in size; this material was thoroughly mixed. From this, a 250g sample was pulverized to 75-micron size; then a 50-gram sample of this underwent fire assay analysis with atomic absorption finish. This technique provides gold analysis ranging from 0.001 to 10.0 g/t gold.

Soil and silt samples were screened to 180-micron size (minus-80 mesh); the fine fraction then underwent gold analysis by 30-gram fire assay with ICP – AES finish, providing a detection limit of 0.001 g/tonne. Individual samples were placed in "kraft bags" and also sealed with a "Zap Strap"; samples were placed in properly labeled rice bags, also sealed with a "Zap Strap", and shipped to ALS Chemex in the same manner as rock samples.

Several analytical techniques were employed on rock samples, depending on the information required. Many rocks were subject to a package including 6-element atomic absorption technique (ALS Chemex: AA-61), analyzing for arsenic (As), vanadium (V), copper (Cu), chrome (Cr), cobalt (Co) and nickel (Ni). The package also includes analysis of sulphur (S-IR08) and gold (Au), platinum (Pt) and palladium (Pd) by ICP analysis (PGM-ICP23). Values exceeding 1.0% for Cu and Ni were re-analyzed by the AA-62 method.

The other major package for elemental analysis of rock sampling was the ME-MS81 package, which involved analysis of Au, Pt and Pd by PGM-ICP23, S by IR08, and of Ag, Ba, Be, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sm, Sr, Ta, Tb, Th, Tl, Tm, U, V, W, Y, Yb, Zn and Zr by ME-MS81.

Samples selected for whole rock analysis (ME-XRF06) were analyzed for percentage amounts of SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O, Cr₂O₃, TiO₂, MnO, P₂O₅, SrO, BaO, LOI (Loss on Ignition), and include total percent. All samples undergoing whole rock analysis also underwent one of these two elemental analytical suites, with a few samples analyzed using both techniques for comparative purposes. Not all rock samples underwent whole rock analysis.

All soil and silt samples underwent 33-element ICP analysis to test for abundances of Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Ti, Tl, U, V, W and Zn, and S by IR-08, and Au, Pt and Pd by PGM-ICP23.

ALS Chemex provides comprehensive in-house quality-control, using numerous blanks to test for any potential contamination, confirming that no detectable contamination has occurred. ALS Chemex also conducts repeated in-house standard sampling for all elements involved in ICP analysis and gold to determine accuracy of analysis. The lab also incorporates more limited analysis of standard samples with known element concentrations provided by several outside firms.

11.0 Data Verification

Much of the geological mapping and geochemical sampling on the Canalask deposit and the Onion and Pic project areas was essential due-diligence style exploration. In all cases, samples obtained were comparable to historic values, although nickel, copper, palladium and platinum values were lower than the peak values historically documented. The most notable due diligence was performed in 2005 when 13 chip samples were taken of the Discovery showing of the Onion block. These returned values from 399 to 6,550 ppm Cu, 1,440 through 19,000 ppm Ni, 134 to 741 ppb Pt and 246 to 3,390 ppb Pd, confirming high metal tenors at the small showing.

Sampling of tailings from the Main Zone of the Canalask deposit returned nickel values from 139 to 40,800 ppm (4.08%) nickel, confirming the presence of nickel.

Several rock samples on the Pic block were analyzed both by Atomic Absorption (AA61) and ME-XRF06 techniques. Sample results were similar, although copper and nickel values returned from the AA61 technique tended to be slightly higher, with no clear relationship for PGMs.

12.0 Adjacent Properties

There are no adjacent properties to the three main claim blocks comprising the White River Nickel project. However, the target deposit setting is based on the Wellgreen deposit to the southeast, held by Coronation Minerals. This deposit was formed by magmatic segregation of immiscible sulphides, with the majority occurring as disseminated to semi-massive nickel-copper sulphides within the footwall gabbros, and as massive sulphide lenses largely in the gabbro.

A 1989 independent resource estimate stated that proven and probable reserves stood at 50.03 M tonnes grading 0.36% Ni, 0.35% Cu, 0.54 g/t Pt and 0.34 g/t Pd (Website, Coronation Minerals). This estimate was released prior to establishment of current resource estimate standards under National Instrument 43-101, does not distinguish between resource categories, has not been substantiated by Falconbridge Ltd or Xstrata plc, and should not be relied upon. However, no direct evidence exists to refute these estimates.

13.0 Mineral Processing and Metallogenic Testing

No known mineral processing or known metallogenic testing has occurred on the Canalask property.

14.0 Mineral Resource and Mineral Reserve Estimates

A 1968 resource estimate of the Main zone of the Canalask deposit estimated a resource of 390,235 tons of 1.35% Ni (T. Antoniuk, 1968, FL file R-11664), although the statement does not attempt to categorize this resource base. Hulbert (1997) suggests that, with dilution factored in, a conservative estimate is of an "ore reserve" of 1,800,000 tonnes grading 0.86% nickel. These estimates were released prior to establishment of current resource estimate standards under National Instrument 43-101, do not distinguish between resource categories, have not been substantiated by Falconbridge Ltd or Xstrata plc, and should not be relied upon. However, no direct evidence exists to refute these estimates. No record of the methodology of the resource calculation was available.

This resource is likely sub-economic, due to its fairly remote location and lack of present available infrastructure, with the exception of the Alaska Highway. There is sufficient land available for provision of mine workings, tailings ponds and other cultural developments, assisted by moderate terrain.

The present adit may result in acid mine drainage into the White River; a separate access would have to be constructed in the event of production. A socio-economic agreement has not been reached with the White River First Nation.

15.0 Other Relevant Data and Information

No other relevant data or information was involved in compilation of this report. The report was based largely on compilation by J. Pattison of available assessment reports, and on conversations with Messrs. Steven Israel and Don Murphy of the Yukon Geology Program.

16.0 Interpretation and Conclusions

16.1 Interpretations

Falconbridge Ltd acquired the Canalask property and staked the additional claims in the area, including the ANT and PIC blocks, because it believed in the area's potential to host an economic nickel-copper-PGE deposit. The Kluane Mafic-Ultramafic Belt, which hosts the White River Intrusive Complex (WRIC), has been interpreted as an ultramafic intrusion and the feeder system for the overlying Nikolai basalt. The WRIC shows a relative lack of internal zonation, suggesting a dynamic internal environment. It consists of outer gabbroic margins grading into an olivine-rich core. There is a well developed alteration halo within enclosing volcanic and sedimentary rocks, suggesting a sustained heat flow and that a large volume of ultramafic magma moved through the system (Pattison, 2005). There are numerous previously known Ni-Cu-PGE occurrences along the footwall of the WRIC in the Onion project area.

No new nickel sulphide occurrences were found during the 2006 field program. However, this is partly due to limited detailed geological mapping, prospecting and rock sampling, except for the Pole project area. Results of the UTEM-3 electromagnetic survey were also received after the field program. The UTEM-3 survey revealed a northwest-southeast trending conductive feature interpreted as occurring at a depth of about 300 metres, gently south dipping with a more abrupt northeastern edge. The trace of this conductor occurs roughly along the hanging wall of the WRIC, although magmatic mineralization to date has been discovered along the footwall, largely within a basal gabbro unit. This discrepancy may be attributable to the southwest dip of the WRIC, which would result in an apparent southwest "offset" at depth of the conductor trace on surface. However, the WRIC is steeply dipping, contrasting with the interpreted very shallow southwest dip of the conductor. No conductive feature is associated with the footwall zone along surface, despite the presence of several small magmatic sulphide occurrences.

In a 1997 assessment report, Expatriate Resources stated that anomalous geophysical responses from airborne magnetic and electromagnetic surveys and follow-up magnetic and Max-Min surveys in the eastern Canalask area are due to well developed fault zones within mafic and ultramafic rocks (Carne, 1997). The 2006 Lamontagne report states that "the shape can be estimated as ling and slender" (Fernley, 2006). This feature is common to conductors on all grids. Thus, the conductor identified at the Onion block in 2006 may represent shallowly south-west dipping mineralized thrust fault zones, as opposed to steeply-dipping footwall-hosted magmatic mineralization.

Results of UTEM surveying on the Canalask grid reveal a weakly conductive feature extending east-southeast, and almost directly along strike of, the Main Zone of the Canalask deposit. This suggests the conductor represents "Canalask-style" epigenetic mineralization, or possibly the host horizon, although the report also states all conductors

occur at depth and are very gently south dipping, a distinct setting from the Canalask deposit.

The conductor is located within footwall Station Creek volcanics at a fairly consistent distance of 150 – 200 metres north of the footwall contact of the WRIC. This is roughly the same extent into the footwall as the Canalask deposit. The strongest response occurs along L10488E through L10998E, somewhat north-east of DDH VQ-7, the only hole to date that intersected substantial nickel-copper sulphide mineralization. This suggests this area has the strongest potential to host epigenetic sulphide nickel-copper mineralization. Although only minor nickel-copper mineralization was intersected in previous drilling east of DDH VQ-7, thus diminishing potential for economic-scale magmatic mineralization, a 600-metre interval of the footwall contact zone of the WRIC partially covering the area of the most strongly conductive portion remains untested.

Soil sampling on the Pole grid led to delineation of a broad although fairly weak coincident nickel-chrome +/- copper anomaly along most of the southwestern limit of surveying. Weakly elevated platinum and palladium values suggest an ultramafic origin; elevated sulphide values along L6200E suggest the possibility of some nickel-copper-sulphide mineralization. This area is covered by muskeg and permafrost, with terrain becoming steeper to the southwest; thus the anomaly may have been transported from further to the southwest. Aeromagnetic surveying by the Geological Survey of Canada revealed a magnetic high just southwest of the surveyed area. Fairly abundant pyroxenite and peridotite float occurs along the entire extent of Nick Creek, indicating an upstream or up-ice source. No ultramafic rocks have been mapped in this area, although the geochemical anomaly provides strong evidence for one or more units of the WRIC to occur here.

The western limit of the weak Pole conductor identified by the UTEM survey corresponds exactly with the eastern limit of the dunite horizon along L5200E, and approximately with the boundary of the Ni-Cr+/- Cu geochemical anomaly in southeastern areas (Maps 4a-d). The eastern portion does not correspond well with geological mapping in southeastern areas, which interpreted stratigraphy as extending east-southeast, similar to Canalask stratigraphy. The 2006 mapping indicates the conductor extends into Nikolai Volcanics south of the Hasen Creek sediments. This discrepancy may result simply from misinterpretation of stratigrapic setting due to lack of exposure, although a unit of Hasen Creek limy sandstone to conglomerate north of the conductor is traceable throughout the grid (Map 4a). An alternate explanation is that the UTEM survey identified two separate conductors interpretable as a single continuous one.

The former explanation suggests the WRIC, manifested as the dunite unit, extends along the trace of the conductor, although the geochemical signature corresponding to this does not extend east of L5200E. The latter suggests a separate, yet undiscovered ultramafic unit south of the projected extent of the WRIC. The conductor is similar in setting to the Canalask and Onion conductors, again suggesting narrow, possibly thrust fault hosted mineralization.

The Pole conductor extends across the entire surveyed portion of the grid, suggesting it likely extends both to the southeast and northwest. Plotting also indicates the Pole conductor occurs about 500 metres south of the Canalask conductor, with a projected north-west strike extension south of the Canalask grid, and thus not detectable by surveying on the Canalask grid. The Pole conductor likely represents a setting similar to the Onion conductor rather than the Canalask one. Thus, the Pole and Onion conductors may represent magmatic mineralization, possibly re-mobilized into fault zones, whereas the Canalask conductor may represent epigenetic mineralization, similar to the Canalask deposit.

The more abrupt northern contact of all conductors may indicate mineralization tends to be confined to specific horizons, namely the ultramafic horizons for the Canalask and Onion conductors, bounded by the footwall contact zone.

A separate coincident nickel-chrome soil anomaly along L5800E of the Pole grid suggests a separate, although small ultramafic unit. Neither this nor the large southwestern anomaly occurs along the east-southeast strike extension of the small dunite horizon located in 2006. This is noteworthy, as it suggests multiple ultramafic units of the WRIC, which occurs as a single linear unit in the Canalask and Onion project areas, although it bifurcates in the central Pic project area. A separate ultramafic horizon would increase potential for magmatic (and hydrothermal) mineral occurrences. No significant normal fault offsets have been mapped in the Onion and Pic areas, where surface exposure is good, lessening the potential for offsetting of a single unit. The absence of sizable lateral displacement along normal faulting anywhere along the project area is further evidence for a separate ultramafic horizon.

The discovery of a small pyroxenite pod on the Pic indicates potential for other ultramafic horizons outside of the main WRIC, at least in the Pic block. The Ni-Cr anomalies at the Pole support this hypothesis. The lack of positive 2006 surface results on the Pic and Onion blocks does not diminish potential for mineralization at depth, although sizable occurrences of surface mineralization have likely all been located.

Numerous small occurrences of disseminated chalcopyrite – pyrrhotite in the footwall Station Creek andesites occur within the Pic block; 2006 prospecting indicate these occur in the footwall area of the Onion block as well. The increased gold content and overall fabric of footwall mineralization suggest that the mineralization was hydrothermally derived, with fluids either enriched in residual gold or having scavenged it from country rock.

At the Wellgreen deposit, the vast majority of mineralization is of magmatic origin, with much smaller skarn and replacement-style zones in the footwall rocks. The presence of footwall-hosted hydrothermal showings may be used as a vector to the proximity of magmatic mineralization. This suggests that a much larger magmatic deposit may occur near the epigenetic Canalask deposit, and that the Canalask/Pole project area, possibly

extending somewhat northwest of the White River, is the prime target area for further exploration.

The Ant block may host small ultramafic units west of Beaver Creek (Maps 2b-d), suggested by Ni-Cr geochemical anomalies from 2006 silt sampling, and also northwest of the Manson Brook showing, although none have been identified on surface to date. Rock sampling of the Marilyn Creek stock returned background gold values; only one silt sample downstream returned an anomalous gold value. This suggests any gold at the stock occurs as sparsely distributed vein-hosted nuggets; thus this stock has low potential to host economic-scale mineralization. Similarly, high gold-in-silt values downstream of the Manson Brook occurrence suggests coarse gold; the single anomalous value from rock sampling was obtained from vein material. The lack of high gold values from soil sampling within a setting prone to maximize gold-in-soil content suggests little gold exists; any gold present would likely occur within small quartz veins. Thus the Manson Brook occurrence is also not a viable exploration target. Small vein-style gold occurrences may exist elsewhere in the Ant block, resulting in the aforementioned gold-in-silt anomalies.

Rubblecrop sampling of an area of intensive quartz veining in andesite along Nick Creek within the Pole block returned a value of 0.726 g/t gold. This indicates a hydrothermal origin, and that other similar showings may occur throughout the Pole area.

16.2 Conclusions

The following conclusions can be made from results of the 2006 program:

- The White River Intrusive Complex (WRIC) is a favourable setting for magmatic copper-nickel sulphide mineralization because of the nature of the intrusion, and the presence of abundant of small magmatic showings along the footwall margin (Pattison, 2005). The WRIC occurs as a fairly linear northwest-southeast striking, steeply southwest-dipping dyke, occurring most commonly between hanging wall Hasen Creek sediments and footwall Station Creek andesitic volcanics. The lack of internal zonation indicates the environment within the intrusion was dynamic and the thick alteration halo in the host rocks suggests a considerable volume of ultramafic magma passed through it (Pattison, 2005). Several small Ni-Cu-PGE showings occur along the footwall margin.
- Two types of deposit settings occur: mineralization of magmatic origin, consisting of disseminated to semi-massive copper-nickel sulphides +/- platinum and palladium (PGMs) largely within basal gabbros of the WRIC along the footwall contact; and epigenetic mineralization of hydrothermal origin, including vein and fracture-filling, skarn and replacement settings within footwall andesites. The Wellgreen Ni-Cu deposit, located about 110 kilometres to the southeast, typifies the magmatic setting; the Canalask deposit typifies the epigenetic setting.

- The magmatic and hydrothermal settings likely share a common origin, with hydrothermal mineralization deposited from late-stage fluids related to the magmatic mineralizing event.
- At the Wellgreen deposit, the vast majority of mineralization is magmatic, with a much smaller proportion of hydrothermally-derived mineralization. This suggests a high magmatic: hydrothermal ratio; therefore the size of hydrothermally derived showings in the footwall may be indicative of the potential presence of proximal magmatic deposits. Using this model, the size of the Canalask deposit suggests strongest potential for a large magmatic deposit may occur in the Canalask/Pole project area, including the immediate northwest side of the White River.
- "UTEM-3" geophysical surveying done in 2006 revealed weakly conductive features at depths of about 300m below surface, paralleling the WRIC within the Onion, Canalask and Pole grids. These suggest very gently southwest-dipping conductors with more abrupt contacts along the northeastern edges. The Canalask conductor extends east-southeast directly from the Main Zone, suggesting a footwall-hosted setting, whereas the Onion and Pole conductors correspond well with down-dip extent of the WRIC itself. The Pole and Canalask conductors are obviously separate features.
- Footwall occurrences found to date in the Onion and Pic project areas are of limited extent. To date, only minor magmatic occurrences have been found, although in the Onion grid area, the setting has potential to host a larger zone at depth.
- Soil geochemical surveying in the Pole area revealed a Ni-Cr +/- Cu anomaly in southwestern areas, coincident with the eastern extent of the Pole conductor and a magnetic anomaly from government aeromagnetic surveying. Ultramafic float is fairly abundant in the stream extending through the grid, which parallels the conductor in the extreme southeastern area. A similar anomaly of more limited extent occurs in the north-central area, suggesting multiple ultramafic members of the WRIC.
- A small pyroxenite pod with elevated nickel and copper values was discovered about 300 metres into the footwall area of the two WRIC horizons in the central Pic property area, also indicating potential for further units of this complex in the Pic area.
- Silt sampling within the Ant project area revealed elevated Ni-Cr-Cu values along one stream west of Beaver Creek; mapping revealed one exposure of olivine gabbro with elevated Ni-Cr values northwest of the "Manson Brook" (Chair Mountain) occurrence.
- Within the Ant block, a strongly carbonate-altered granitic stock, the "Marilyn Creek" stock (unofficial name) was found to have limited gold potential. A

second occurrence consisting of strongly altered limonitic Nikolai basalts with some quartz veining, called the "Manson Brook" occurrence was also found to have low gold potential. Irregular gold-in-silt values downstream suggest narrow, likely vein-associated coarse gold.

17.0 Recommendations

17.1 Recommendations

Exploration within the White River Nickel Project area should focus on the Canalask/Pole project area, extending somewhat northwest of the White River. The terrain east of the White River is moderate and by far the most amenable to exploration; most areas are accessible by all-terrain vehicles extending southwest from an access road usable by 4WD vehicles. Some further exploration is recommended for all other project areas, particularly the Onion area within the 2006 UTEM grid.

A two-phased program is recommended, with Phase 1 consisting of airborne magnetic and "VTEM" geophysical surveying of the Canalask/Pole, Onion and Pic project areas, and surface exploration, leading to identification of specific drill targets (if any). This is to be followed by a Phase 2 diamond drilling program, tentatively set at 3,200 metres of "NTW" core in eight holes. Six of these are proposed for the Canalask/Pole project area; two are proposed for the Onion area. A single drill employing two 12-hour shifts per day is recommended.

The airborne survey should be done in March, prior to calving season of the local Chisana caribou herd. Line cutting should begin about May 15. The actual Phase 1 program should commence by June 1, on the Canalask/Pole area; Phase 2 should commence on the Onion block no later than July 20, then move onto the Canalask/Pole area, to avoid freezing of water lines.

The existing access road and all-terrain trails on the Canalask/ Pole project area should be upgraded to accommodate ATV vehicles easily for the Phase 1 program. The Pole grid should be extended westward to L4600E and eastward to L7250E with UTEM surveying to be conducted along these extensions. The 2006 soil geochemical survey should be expanded to cover all present and proposed cut lines of the grid. A 50-metre sample spacing is recommended. This area should undergo detailed geological mapping and prospecting, to identify any ultramafic units and associated mineralization. The soil geochemical survey should be extended westward along the refurbished Canalask grid to at least L10488E (Map 3a). Detailed geological mapping should be done here also.

Detailed geological mapping is recommended on the portion of the Onion project area that underwent UTEM surveying in 2006, again focusing on any conductors identified. Detailed mapping and prospecting is also recommended for the area just northwest of the White River in the Onion project area. Further UTEM surveying on the Onion, and surveying of the Pic projects areas should be dependent on results of the airborne surveying.

Helicopter-assisted traversing, focusing on geological mapping and prospecting, is recommended to take place along the small streams within the Pic block. Areas of focus

are the southwest, hanging wall side of the WRIC, as well as the footwall side, to investigate extent of hydrothermal occurrences.

Limited helicopter traversing is also recommended on the Ant block to investigate the area near the stream hosting the combined Ni-Cr-Cu anomalies returned from silt sampling of the small stream west of the Beaver Creek, and the olivine gabbro occurrence northwest of the Manson Brook occurrence. An attempt should be made to locate the Yellow showing. No further work is recommended for the Manson Brook occurrence and the Marilyn Creek stock.

Helicopter support is required for traversing on the Pic, Onion and Ant blocks. If Phase 1 results warrant a Phase 2 program, access trails on the Canalask/ Pole project area should be upgraded to accommodate skid-mounted diamond drilling equipment, requiring some infilling of boggy sections. Drilling on the Onion block will require helicopter support.

A rough estimate for the airborne survey, including ferry, stands at \$240,000. Total projected expenses for the Phase 1 program, including pre-program preparation, line cutting, report writing and a 10% contingency on all facets stand at about \$271,636. Total expenditures using the same parameters for the Phase 2 drilling program are projected at \$981,424, for a project total of \$1,493,060.

17.2 Recommended Budgets

17.2.1 Phase 1: Surface Exploration

Pre-program preparation: 12 days @ \$600/day:		\$ 7,200.00
Line Cutting: 9.6 line km, all in, incl accommodati	ions:	\$ 27,020.00
Personnel: Project Geologist: 29 days @ \$600/day	:	\$ 17,400.00
Geologist: 31 days @ \$500/day:		\$ 15,500.00
Senior Geologist (Xstrata plc): 6 days @ \$600/day	7:	\$ 3,600.00
Technician: 31 days @ \$350/day:		\$ 10,850.00
Technician: 29 days @ \$375/day:		\$ 10,875.00
Helicopter fees: 40 hrs @ \$1,200/hr, incl fuel:		\$ 48,000.00
Rock sample assaying: 200 samples (ICP + gold)	@ \$34/sample:	\$ 6,800.00
Whole rock analysis: 80 samples @ \$65/sample:	_	\$ 5,200.00
Soil sample assaying: 552 samples @ \$30/sample:		\$ 16,560.00
Silt sampling: 80 samples @ \$30/sample:		\$ 2,400.00
Standards, incl. analysis: 25 @ \$55 ea. all-in:		\$ 1,375.00
Shipping:		\$ 1,400.00
Groceries:		\$ 1,110.00
Accommodations: 180 person-days @ \$130/day:		\$ 23,400.00
Expediting:		\$ 2,100.00
ATV Rental: 2 ATVs + 1 trailer @ \$100/day, all-i	n, for 40 days:	\$ 4,000.00
Truck rental: 1 truck @ \$80/day, remainder at \$10	0/day:	\$ 7,400.00
Mileage:		\$ 232.00
Radio rental: 40 rental-days days @ \$20/day:		\$ 800.00
Truck fuel:		\$ 3,120.00
Travel meals:		\$ 240.00
Travel expenses, incl. Xstrata, Lamontagne person	nel flights:	\$ 10,800.00
Documents, maps:		\$ 150.00
Office supplies:		\$ 600.00
Field supplies:		\$ 1,260.00
Equipment and expendables:		\$ 1,000.00
	Field Total:	\$230,692.00
Data compilation, report writing: 15 days @ \$600/	/day:	\$ 9,000.00
Geophysics report writing:		\$ 4,250.00
Digitizing: 60 hrs @ \$50/hr:		\$ 3,000.00
	Sub-Total:	\$246,942.00
	10% Contingency:	\$ 24,694.20
\mathbf{G}	rand Total, Phase 1:	\$271,636.20

17.2.2 Phase 2: Diamond Drilling

Pre-project preparation: 10 days @ \$600/day:		\$ 6,000.00
Road construction, pad clearing:		\$ 18,000.00
Pad building:		\$ 12,000.00
Personnel: Project Geologist: 78 days @ \$600/day:		\$ 46,800.00
Technician: 78 days @ \$325/day:		\$ 23,530.00
Drilling: 3,200 metres @ \$115/m:		\$368,000.00
Drilling: Hourly charges: 64 days @ \$600/day + Mo	be onto site:	\$ 42,050.00
Drilling: Mobe – Demob:		\$ 5,600.00
Drill equipment rental: 68 days @ \$100/day:		\$ 6,800.00
Drill lubricants, bentonite:		\$ 3,840.00
Tests:		\$ 1,950.00
Travel time: 65days @ \$375/day:		\$ 24,375.00
Helicopter support: 19 days @ 4 hrs/day @ \$1,200/h	ır, all-in:	\$ 91,200.00
Sperry Sun rental (\$1,800/mo):		\$ 4,200.00
Reclamation bond:		\$ 25,000.00
Permitting: 2.5 days @ 600/day + fee:		\$ 1,775.00
Core sampling: 700 samples @ \$35/sample:		\$ 24,500.00
Shipping:		\$ 5,150.00
Standards:		\$ 1,600.00
Accommodation: 420 person-days @ \$130/day:		\$ 54,600.00
Expediting:		\$ 9,300.00
Fuel, drilling:		\$ 31,200.00
Fuel, water line:		\$ 4,480.00
Fuel, core shack:		\$ 4,480.00
ATV Rental: 139 machine-days @ \$50/day:		\$ 6,950.00
Truck rental: 68 days x 2 @ \$100/day + 77 @ 80/day	y:	\$ 19,760.00
Gear rental: 76 days @ \$60/day:		\$ 4,560.00
Core tent rental: 76 days @ \$30/day:		\$ 2.280.00
Mileage:		\$ 464.00
Radio rental: 76 days @ \$20/day:		\$ 1,520.00
Truck fuel:		\$ 9,400.00
Travel meals:		\$ 460.00
Office supplies:		\$ 800.00
Equipment and expendables:		\$ 1,500.00
Core boxes: 760 boxes @ \$13/box:		\$ 9,880.00
Field total:		\$874,004.00
Report writing: 20 days @ \$600/day:		\$ 15,000.00
Digitizing: 50 hours @ \$50/hr:		\$ 3,200.00
-	Sub-total:	\$892,204.00
	10% Contingency:	\$ 89,220.40
	Phase 2 Total:	\$981,424.40

18.0 References

Carne, R.C, 1997: "Report on 1997 Drilling on the CanAlask Property", Assessment Report 093698, Expatriate Resources.

Carne, R.C. 1994: "Report on 1994 Diamond Drilling, CanAlask Property", Assessment Rep 093256, Expatriate Resources Ltd. and Cachet Enterprises Corp.

Hulbert, L.J. 1997: "Geology and Metallogeny of the Kluane Mafic – Ultramafic Belt, Yukon Territory, Canada: Eastern Wrangellia – A New Ni-Cu-PGE Metallogenic Terrane", Natural Resources Canada, Geological Survey of Canada, Bulletin 506, Canada Communications Group.

Pattison, J. 2005: Notes to Accompany MapInfo Compilation of the Canalask area, Yukon Territory", In-house report for Falconbridge Ltd.

Yukon Minfile, 2005: Yukon Geological Survey, Yukon Ministry of Energy, Mines and Resources.

Appendix 1. Certificate of Author

- I, Carl M. Schulze, PGeo, hereby certify that:
- I am a self-employed Consulting Geologist and sole proprietor of: All-Terrane Mineral Exploration Services
 Dawson Rd
 Whitehorse, Yukon Y1A 5T6
- 2) I graduated with a Bachelor of Science Degree in geology from Lakehead University, Thunder Bay, Ontario, in 1984.
- 3) I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC).
- 4) I have worked as a geologist for a total of 20 years since my graduation from Lakehead University.
- 5) I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6) I am responsible for preparation of all sections of the technical report entitled "NI 43-101-Compliant Report on the 2006 Exploration Program on the White River Nickel Project, Xstrata plc (Falconbridge Ltd)" on the entire property area comprising the White River Nickel Project. I was active on-site during most of the program of roughly 55 days from July 9 to Sept 2, 2006.
- 7) I have not had prior involvement with the properties that are the subject of the Technical Report prior to March 2004.
- 8) I am not aware of any material facts or material changes with respect to the subject matter of the technical report not contained within the report, of which the omission to disclose makes the report misleading.
- 9) I am independent of the issuers applying all of the tests in section 1.5 of National Instrument 43-101.
- 10) I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 11) I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.
- 12) The effective date of this report is Sept 5, 2006.

Dated this 26th Day of January, 2007

"Carl Schulze"

Carl Schulze, BSc, PGeo Address: 35 Dawson Rd Whitehorse, Yukon Y1A 5T6 Telephone: 867-633-4807

Fax: 867-633-4883

E-mail: allterrane@northwestel.net

Appendix 2: ANT Project area Sample Descriptions and Results

Appendix 2a: Rock sample descriptions, results Appendix 2b: Soil sample descriptions, results Appendix 2c: Silt sample descriptions, results Appendix 2d: Whole Rock sample descriptions, results

SILT SAMPLE DESCRIPTION SHEET (Appendix 2c)

"ANT" Block, Xstrata plc (formerly Falconbridge Ltd.) July - August, 2006

Sample No.	Easting NAD 83	Northing NAD 83	Zone	% Fines	Colour	Stream Grade	Stream Width	Date	Sampler	Comments
	NAD 83	NAD 83				Grade	(m)			
TC035251	510316	6878152	7	70	Light Brown	Gentle	1	Aug. 12	BR/NVW	Some Organics
TC035252	510389 510532	6878153 6878074	7	70 50	Dark Brown	Gentle	1	Aug. 12 Aug. 12	BR/NVW BR/NVW	Some Organics
TC035254	510756	6877940	7	35	Brown Grey Brown	Moderate Moderate	2.5	Aug. 12	BR/NVW	
	510911 511050	6877811 6877632	7	30 80	Grey Grey	Gentle Moderate	3	Aug. 12 Aug. 12	BR/NVW BR/NVW	
TC035257	511158	6877527	7	60 40	Brown	Moderate	4	Aug. 12	BR/NVW	
TC035258 TC035259	508014 508054	6878491 6878831	7	20	Grey Brown Grey	Moderate Moderate	1.5	Aug. 13 Aug. 13	BR/NVW BR/NVW	
TC035260 TC035261	507989 507791	6878977 6879145	7	40 25	Light Grey Brown	Moderate Moderate	2 2	Aug. 13 Aug. 13	BR/NVW BR/NVW	
TC035262	507624	6879344	7	40	Brown	Gentle	1	Aug. 13	BR/NVW	
TC035263 TC035264	507467 507349	6879519 6879753	7	25 30	Grey Dark Brown	Moderate Gentle	2 2	Aug. 13 Aug. 13	BR/NVW BR/NVW	Some Organics Mossmatt
TC035265 TC035266	507275 507023	6879969 6880122	7	40 20	Grey Brown Grey Brown	Gentle Moderate	2 2	Aug. 13 Aug. 13	BR/NVW BR/NVW	
TC035267	506779	6880193	7	50	Grey	Steep	3	Aug. 13	BR/NVW	
TC035268 TC035269	506572 506367	6880331 6880490	7	60 50	Brown Grey	Moderate Moderate	3 1	Aug. 13 Aug. 13	BR/NVW BR/NVW	
TC035270 TC035271	506179 505994	6880528 6880538	7	50 30	Grey Grey	Gentle Gentle	1 15	Aug. 13 Aug. 13	BR/NVW BR/NVW	
TC035272	503619	6882585	7	50	Light Brown	Steep	3	Aug. 16	BR/NVW	Dry Creek
TC035273 TC035274	503732 503758	6882697 6882770	7	25 30	Grey Brown Grey	Steep Steep	<u>3</u>	Aug. 16 Aug. 16	BR/NVW BR/NVW	Dry Creek Dry Creek
	503761 503886	6882829 6883005	7	35 30	Grey Brown Grey	Steep Steep	3 7	Aug. 16 Aug. 16	BR/NVW BR/NVW	Dry Creek Dry Creek
TC035277	504083	6883131	7	50	Grey	Steep	4	Aug. 16	BR/NVW	Dry Creek
TC035278 TC035279	504172 504276	6883217 6883318	7	25 60	Grey Grey	Moderate Moderate	5	Aug. 16 Aug. 16	BR/NVW BR/NVW	Dry Creek Dry Creek
TC035280	504297	6883548	7	70	Grey	Moderate	3	Aug. 16	BR/NVW	
	504363 504546	6883574 6883792	7	70 60	Grey Grey	Gentle Moderate	6	Aug. 16 Aug. 16	BR/NVW BR/NVW	Dry Creek
TC035283 TC035284	504552 504789	6883755 6883802	7	75 65	Grey Grey	Gentle Moderate	3 6	Aug. 16 Aug. 16	BR/NVW BR/NVW	Dry Creek
TC035285	504939	6883951	7	80	Grey	Gentle	9	Aug. 16	BR/NVW	Dry Creek
TC035286 TC035462	505084 513478	6884047 6879409	7	60 20	Grey Dark Brown	Gentle Steep	7	Aug. 16 Aug. 9	BR/NVW BR/NVW	Dry Creek Dry Creek
TC035463	513455	6879646	7	50	Brown	Steep	1	Aug. 9	BR/NVW	Dry Creek
TC035465	513325 513116	6879821 6879914	7	80 50	Dark Brown Grey Brown	Moderate Gentle	1	Aug. 9 Aug. 9	BR/NVW BR/NVW	Dry Creek
TC035466	512949 512877	6879858 6879885	7	30 60	Brown Dark Brown	Moderate Gentle	1.5	Aug. 9 Aug. 9	BR/NVW BR/NVW	Dry Creek
TC035468	512740	6880044	7	50	Brown	Steep	4.5	Aug. 9	BR/NVW	Dry Creek
	512604 512399	6880205 6880323	7	50 40	Light Brown Grey Brown	Moderate Moderate	6 8	Aug. 9 Aug. 9	BR/NVW BR/NVW	
TC035471	512260	6880353	7	45	Brown	Moderate	3	Aug. 9	BR/NVW	
	512245 512187	6880312 6880566	7	70 50	Brown Grey	Moderate Moderate	20 25	Aug. 9 Aug. 9	BR/NVW BR/NVW	
TC035474	512136	6880798	7	35	Grey Brown	Moderate	20	Aug. 9	BR/NVW	
	511923 511820	6881002 6881211	7	60	Grey Brown Grey Brown	Moderate Moderate	7 8	Aug. 9 Aug. 9	BR/NVW BR/NVW	
TC035477 TC035478	509928 509719	6878809 6879074	7	20 10	Grey Brown Grey Brown	Gentle Gentle	1	Aug. 10	BR/NVW BR/NVW	Very Organic
	509644	6879309	7	50	Grey Brown		2	Aug. 10 Aug. 10	BR/NVW	
TC035480 TC035481	509592 509588	6879477 6879565	7	20 25	Grey Brown Grey Brown	Moderate Moderate	1.5	Aug. 10 Aug. 10	BR/NVW BR/NVW	
TC035482	509556	6879785	7	35	Grey Brown	Moderate	2	Aug. 10	BR/NVW	
TC035483 TC035484	509379 509131	6879972 6880088	7	50 40	Grey Brown Brown	Gentle Moderate	2.5 6	Aug. 10 Aug. 10	BR/NVW BR/NVW	
TC035485	508942	6880252	7	40	Grey Brown	Moderate	10	Aug. 10	BR/NVW	
TC035486 TC035487	508778 508643	6880482 6880623	7	50 35	Brown Grey	Gentle Moderate	17 8	Aug. 10 Aug. 10	BR/NVW BR/NVW	
TC035488 TC035489	512180 512146	6880156 6879845	7	90 90	Grey Brown Grey Brown	Gentle Gentle	11 8	Aug. 11 Aug. 11	BR/NVW BR/NVW	
TC035499	512285	6879634	7	70	Grey Brown	Moderate	9	Aug. 11	BR/NVW	
	512370 512474	6879432 6879199	7	60 50	Brown Grey Brown	Gentle Gentle	8	Aug. 11 Aug. 11	BR/NVW BR/NVW	
TC035493	512567	6878986	7	50	Grey Brown	Moderate	9	Aug. 11	BR/NVW	
	512584 512671	6878706 6878496	7	70 90	Brown Grey	Gentle Gentle	13 7	Aug. 11 Aug. 11	BR/NVW BR/NVW	
TC035496	512677	6878304	7	50	Grey	Moderate	6	Aug. 11	BR/NVW	
TC035497 TC035498	509406 509578	6877886 6878109	7	15 10	Brown Grey	Steep Moderate	1	Aug. 12 Aug. 12	BR/NVW BR/NVW	
TC035499 TC035500	509822 510059	6878163 6878109	7	60 20	Brown Dark Brown	Gentle Gentle	1	Aug. 12 Aug. 12	BR/NVW BR/NVW	High Organics Sandy, Dry Creek
TC035601	507435	6880998	7	80	brown	Mod	0,5	13/8/2006	CS/ MP	mossmat, high organics
TC035602 TC035603	507285 507060	6880971 6880994	7		brown brown	Mod Mod		13/8/2007 13/8/2008	CS/ MP CS/ MP	mossmat, stabilized silts mossmat
TC035604 TC035605	506948 506857	6881090 6881135	7	80	brown db	Gent/mod Mod	3	13/8/2009 13/8/2010	CS/ MP CS/ MP	includes mossmat
TC035606	506595	6881116	7	65	db	Mod	3	13/8/2011	CS/ MP	mossmat mossmat
TC035607 TC035608	506336 502495	6881196 6882080	7	80 40		Mod Steep	1,5	13/8/2012 14/8/2006	CS/ MP CS/ MP	stabilized silts dry, sparse silts in rock slide bed
TC035609	502574	6882122	7	45	brown	Steep	0,5	14/8/2006	CS/ MP	stabilized silts
TC035610 TC035611	502686 502775	6882114 6882040	7		gb gb	Steep Mod		14/8/2006 14/8/2006	CS/ MP CS/ MP	stabilized silts stabilized silts
TC035612	502779	6882030	7	50	brown	Steep	0,5	14/8/2006	CS/ MP	bank silts
TC035613 TC035614	502795 502836	6881896 6881810	7	45	gb gb	Steep Steep	1	14/8/2006 14/8/2006	CS/ MP CS/ MP	sparse silts, mossmat stabilized silts, 2 channels
TC035615 TC035616	502852 502947	6881722 6881612	7	55 50	db GB	Steep Steep		14/8/2006 14/8/2006	CS/ MP CS/ MP	high organics stabilized silts
TC035617	503090	6881437	7	60	brown	Steep		14/8/2006	CS/ MP	rare pockets of fine silts
TC035618 TC035619	503124 503135	6881227 6881015	7		grey gb	Steep Steep	1	14/8/2006 14/8/2006	CS/ MP CS/ MP	sparse fine silts stabilized silts
TC035620	503109	6880986	7		brown	Mod	2	14/8/2006	CS/ MP	sparse fine silts
TC035621 TC035622	503316 503318	6880965 6880950	7					14/8/06 14/8/06	CS/ MP CS/ MP	
TC035623	503637	6881010	7					14/8/06	CS/ MP	
TC035624 TC035625	503650 503862	6881025 6880918	7					14/8/06 14/8/06	CS/ MP CS/ MP	
TC035626	503990	6880808	7					14/8/06	CS/ MP	
TC035627 TC035628	504171 504387	6880713 6880485	7					14/8/06 14/8/06	CS/ MP CS/ MP	
TC035629 TC035630	504430	6880480 6880431	7					14/8/06 14/8/06	CS/ MP CS/ MP	
TC035631	504631 504865	6880410	7					14/8/06	CS/ MP	
TC035632 TC035663	505073 502375	6880295 6882946	7	50	lt brown	Steep		14/8/06 17/8/06	CS/ MP BR/CS	Active stream
	502435	6883129	7	45	lt brown	Steep	5	17/8/06	BR/CS	Dry, several sites
TC035665	502467	6883127	7	15	lt brown	Steep	5	17/8/06	BR/CS	Flowing; several stabilized sites

TC035667	502421	6883534	7 50	lt brown	Mod-stp	3	17/8/06	BR/CS	Dry; mod abundant silt
TC035668	502396	6883546		grey	Steep		17/8/06	BR/CS	Active; abundant shale but rare silt
TC035669	502469	6883775		grey	Mod		17/8/06	BR/CS	Sparse fine silts
TC035670	502577	6883972	60	grey	Mod	6	17/8/06	BR/CS	Wide silt planes near bank
TC035671	502503	6884179	65	dk gry	Mod	8	17/8/06	BR/CS	Moderately abundant silt
TC035672	502463	6884356	7 40	grey	Mod	5	17/8/06	BR/CS	Rare fine silt
TC035673	502697	6884451		grey	Steep		17/8/06	BR/CS	Abundant shale, rare silt
TC035674	502871	6884573		grey	Mod-stp		17/8/06	BR/CS	Rare fine silt
TC035675	502896	6884680		gr-brn	Steep		17/8/06	BR/CS	Tributary; stabilized silts, very rare fines
TC035676	503005	6884766		grey	Mod		17/8/06	BR/CS	High shale content in creek bed
TC035677	503126	6884989		grey	Mod		17/8/06	BR/CS	Pocket of fines in wide, stony channel
TC035678	503265	6885156		tan-gry	Mod		17/8/06	BR/CS	Fairly abundant silt; several sites
TC035679	503335	6885393 7 6885522 7		grey	Steep		17/8/06	BR/CS	Moderately abundant silt
TC035680 TC035681	503555 503772	6885522 5 6885527 5		grey gry-tan	Steep Steep		17/8/06 17/8/06	BR/CS BR/CS	Fairly sparse silt sparse fine silts
TC035682	503772	6885663		grey	Mod	5	17/8/06	BR/CS	Moderately abundant silt
TC035683	504122	6885808		grey	Mod	15	17/8/06	BR/CS	Mod abundant silt; stream "flattens" here
TC035684	504325	6885735		grey	Gentle		17/8/06	BR/CS	20-m wide gravel flood plain
TC035685	504499	6885619		grey	Gentle		17/8/06	BR/CS	15 metre-wide flood plain
TC276201	512955	6875935	45	gry-brn	Mod	2.5	20/7/06	CS/ NVW	Several sites, fairly sparse fines
TC276202	513165	6876062	50	gry-brn	Mod	2	20/7/06	CS/ NVW	Wide stream bed, fairly abundant silt
TC276203	513527	6875868	45	brn-blk	Mod	0.4	20/7/06	CS/ NVW	narrow, dry stream bed
TC276204	513510	6875857	60	gry-brn	Mod		20/7/06	CS/ NVW	Dry: fine silts along edge
TC276205	513596	6875970		brown	Gentle		20/7/06	CS/ NVW	Sanpete creek; mossmat along edge
TC276206	513473	6876113		brown	Mod		20/7/06	CS/ NVW	Dry: stream "goes to ground"
TC276207	513595	6876177		brown	Mod	1.5	20/7/06	CS/ NVW	Narrow; mossmat
TC276208	513396	6876401		brown	Mod	4.5	20/7/06	CS/ NVW	Mossmat
TC276209	513324	6876618 7 6876868 7		brown	Mod		20/7/06	CS/ NVW	Mossmat, silt along edge
TC276210 TC276211	513274 513301	6876868 7 6877115 7	50	gry-brn gry-brn	Mod Mod		20/7/06 20/7/06	CS/ NVW CS/ NVW	Fine silt along edge of dry bed
TC276211 TC276212	513301	6877283		gry-brn brown	Gentle		20/7/06	CS/ NVW	Mossmat; silt along edge of dry bed Spring (abnt water and silt)
TC276212	513293	6877354		brown	Mod		20/7/06	CS/ NVW	Fast flow, bouldery
TC276213	513349	6877403		brown	Gentle		20/7/06	CS/ NVW	Near source; abnt silt and mossmat
TC276214	513283	6877577		brown	Mod		20/7/06	CS/ NVW	Some fine dry silt aong edge
TC276216	513265	6877646		brown	Steep		20/7/06	CS/ NVW	Mossmat
TC276217	512048	6875898		brown	Mod		21/7/06	CS/ NVW	Mossmat along edge
TC276218	512161	6876150	7 40	brown	Mod		21/7/06	CS/ NVW	Mossmat, some fine silt
TC276219	512229	6876364	65	brown	Mod	13	21/7/06	CS/ NVW	Mossmat, some "fresh" silt
TC276220	512247	6876610	7 50	brown	Mod		21/7/06	CS/ NVW	Mossmat
TC276221	512377	6876806	60	brown	Mod	5	21/7/06	CS/ NVW	Mossmat, several sites
TC276222	512517	6876993		brown	Mod		21/7/06	CS/ NVW	Mossmat, some "fresh" silt
TC276223	512668	6877183		lt brown	Mod		21/7/06	CS/ NVW	Sparse fresh sil; several sites
TC276224	512834	6877345		brown	Steep		21/7/06	CS/ NVW	Some fresh silt, mostly mossmat
TC276225	513026	6877458		brown	Steep		21/7/06	CS/ NVW	Mosmat, no fresh silt; 2 sites
TC276226	513221	6877602		brown	Steep		21/7/06	CS/ NVW	Mossmat, some "fresh" silt
TC276227	513194	6877814 7 6877794 7		brown	Gentle		21/7/06	CS/ NVW	Fairly abundant silt
TC276228 TC276229	513135 512947	6877794 7 6877929 7		brown brown	Mod Gentle		21/7/06 21/7/06	CS/ NVW CS/ NVW	Mossmat, some "fresh" silt Fresh silt and mossmat
TC276229	512947	6878140	0.0	brown	Mod		21/7/06	CS/ NVW	Fresh silt and mossmat
TC276231	512724	6878306		brown	Gentle		21/7/06	CS/ NVW	Coarse to medium sand; incl. mossmat
TC276651	508841	6878132		grey	Mod		10/8/2006	CS/ MP	mossmat/ fine silts sparse
TC276652	508827	6878367		GB	Mod	2	10/8/2006	CS/ MP	rare silts/ mostly mossmat
TC276653	508672	6878547	7 40	GB	Mod	2	10/8/2006	CS/ MP	rare silts/ mostly mossmat
TC276654	508645	6878545	7 70	brown	Mod	2	10/8/2006	CS/ MP	dry, soil developments
TC276655	508675	6878773	7 35	grey	Gent/mod	2	10/8/2006	CS/ MP	stabilized silts
TC276656	508591	6878976		GB	Mod		10/8/2006	CS/ MP	mossmat/ fine sine
TC276657	508537	6879192		GB	Mod		10/8/2006	CS/ MP	mossmat
TC276658	508454	6879401		brown	Mod		10/8/2006	CS/ MP	mossmat
TC276659	508432	6879384		GB	Mod		10/8/2006	CS/MP	mossmat
TC276660 TC276661	508338 508350	6879597 7 6879803 7		GB GB	Mod Mod		10/8/2006 10/8/2006	CS/ MP CS/ MP	mossmat
TC276661 TC276662	508350	6880063		GB brown	Mod Mod	2	10/8/2006	CS/ MP CS/ MP	mossmat mossmat
TC276663	508312	6880129		grey	Steep	_~	10/8/2006	CS/ MP	dry, mossmat several sites
TC276664	508407	6880297		grey	Mod		10/8/2006	CS/ MP	stabilized silts
TC276665	508548	6880450		GB	Mod	2,3	10/8/2006	CS/ MP	stabilized silts
TC276667	510897	6876944		GB	Gent/mod	3	11/8/2006	CS/ MP	mossmat/ soil developments, stab silts
TC276668	510896	6876931		GB	Mod	0,5	11/8/2006	CS/ MP	mossmat
TC276670	510881	6876927	35	GB	Mod		11/8/2006	CS/ MP	mossmat, stabilized silts
TC276671	511058	6877208		GB	gentle		11/8/2006	CS/ MP	mossmat, stabilized silts
TC276672	511257	6877424		black/br	Mod		11/8/2006	CS/ MP	mossmat, stabilized silts
TC276673	511333	6877435		db	Gentle		11/8/2006	CS/ MP	stabilized silts
TC276674	511624	6877485		lt brown	Gentle		11/8/2006	CS/ MP	mossmat, soil developments
TC276675	511905	6877584		db	Gentle		11/8/2006	CS/ MP	stabilized silts
TC276676	512129	6877599		gb	Mod Mod		11/8/2006	CS/MP	stabilized silts
TC276677 TC276678	512334 512485	6877636 3 6877824 3		gb db	Mod Mod		11/8/2006 11/8/2006	CS/ MP CS/ MP	mossmat, stabilized silts mossmat, stabilized silts
TC276678	512485	6878050		brown	Mod		11/8/2006	CS/ MP	mossmat, stabilized silts mossmat, soil developments
TC276680	512001	6880732		db	Mod		12/8/2006	CS/ MP	dry, soil developments dry, soil developments, mossmat
TC276681	512032	6880846		db	Mod		12/8/2006	CS/ MP	high organics/ intermitent flow
TC276682	511825	6880989		db	Mod		12/8/2006	CS/ MP	several channels, dry
TC276683	511800	6881220		grey	Gentle		12/8/2006	CS/ MP	stabilized silts
TC276684	511572	6881507		brown	Gentle		12/8/2006	CS/ MP	stabilized silts
TC276685	511536	6881513		gb	Steep	0,5	12/8/2006	CS/ MP	stabilized silts
TC276686	511500	6881700		brown	Gentle	4	12/8/2006	CS/ MP	bank silts
TC276687	511420	6881947		brown	mod		12/8/2006	CS/ MP	sparse pockets silts
TC276688	511383	6881990		brown	mod		12/8/2006	CS/ MP	dry, mossmat
TC276689	511400	6882250		brown	mod		12/8/2006	CS/ MP	bank silts
TC276690	511481	6882600		gb	Gentle		12/8/2006	CS/ MP	2 channels, stabilized silts
TC276691	508621	6880616		gb	Mod		13/8/2006	CS/MP	mossmat
TC276692 TC276693	508567	6880900		brown	Mod	1,5	13/8/2006	CS/MP	mossmat
TC276693 TC276694	508375 508177	6881050 5 6881181 5		brown gb	Mod Mod	2	13/8/2006 13/8/2006	CS/ MP CS/ MP	mossmat
TC276694 TC276696	508177	6881254		brown	Mod		13/8/2006	CS/ MP	mossmat mossmat, high organics
TC276696	507945	6881210		brown	Mod	_	13/8/2006	CS/ MP	mossmat, nign organics
TC276698	507737	6881170		brown	Mod	2	13/8/2006	CS/ MP	abondant fine silts
TC276699	507504	6881087		brown	Mod	2	13/8/2006	CS/ MP	mossmat, stabilized silts
						_			

	ICP6 ME-IC Fe	ME-ICP Cu	ME-ICP6 Cr	ME-ICP6 Co	ME-ICP6	ME-ICP6 Ca	ME-ICP6	IE-ICP6	ME-ICP6	ME-ICP6 As	ME-ICP6	ME-ICP6	PGM-ICP23 Pd Check	PGM-ICP23	PGM-ICP23 Pt Check	PGM-ICP23 Pt	PGM-ICP23 Au Check	PGM-ICP23 Au	SAMPLE
TOTAL TOTA	%	ppm																	
Trigogram State	57 4																		
Telephone Process NSS	50 4 67 4	ϵ	7 111	17	< 0.5	3.1	<2	0.9	550	5	7.25	< 0.5		0.002		< 0.005		0.003	TC035253
TOTOSTOP 0.007	68 4 98 5	9	155	22	< 0.5	3.6	<2	0.8	580	22	7.59	0.5		NSS		NSS		NSS	TC035255
TOTAL Color Colo	103 5 106 5	10	174	23	< 0.5	3.49	<2		620	23	7.34	< 0.5		0.006		< 0.005		0.017	TC035257
Triving Triv	83 4 83 4	8	139	23	<0.5		<2	1	520	25	7.97	< 0.5		0.003		< 0.005		0.006	TC035259
TCUSSIGN GOOD GOO	75 4 96 4	9						0.9						0.003				0.02	
TOTAL Color Colo	79 4 63 5																		
TOUSSIGN	80 4 53 4					3.18						< 0.5				< 0.005			
TODS570	58 4 53 4																		
TODS271 SSS	64 5 62 5					3.85													
TOUSTO 10094 NS	61 5 65 5									-									
Trons175	216 9 162 7												NSS		NSS		NSS		
TOUSSTOP GOOD GOO	186 7 174 7																		
Trouspage	166 7 140 7																		
Trosts280	134 7 149 7	13	798	52	<0.5	4.36	<2	0.5	350	32	6.22	< 0.5	NSS	0.024	NSS	0.023	NSS	0.023	TC035278
TOUSSER	98 5 90 5	9	215	25	< 0.5	2.28	<2	1.1	690	6	7.95	< 0.5		0.002		< 0.005		0.004	TC035280
TOSS244	87 5 77 5	8	239	27	< 0.5	2.49	<2	1.1	680	16	7.88	< 0.5		0.002		< 0.005		0.006	TC035282
TODS346	98 5 88 5	9	3 201	23	< 0.5	2.41	<2	1.1	660	8	7.75	< 0.5		0.001		< 0.005		0.001	TC035284
TOUSS46	94 5 53 3	ç	220	24	< 0.5	2.31	<2	1	630	11	7.46	< 0.5	NSS	0.003	NSS	< 0.005	Nec	0.003	TC035286
Tross468 NS	60 4	ϵ	82	17	< 0.5	2.25	<2	1.2	660	17	8	< 0.5	מטונו	< 0.001	ממזי	< 0.005	CICIT	< 0.001	TC035463
TC035467	51 4 50 4	5	63	12	< 0.5	1.98	<2	0.9	460	6	7.36	< 0.5		0.007		< 0.005		0.016	TC035465
Troussers	67 5 59 5	5	67	18	< 0.5	1.99	<2	0.8	420	43	7.9	< 0.5		< 0.001		< 0.005		0.001	TC035467
TC035472	66 5 65 4	ϵ	5 53									< 0.5							
TC035473	88 5 74 5																		
Trigisaria	117 6 125 11																		
Troussars	133 6 119 1																		
TC035478	119 7 29 4	11	161	26	<0.5	4.16	<2	0.8	690	19	8	< 0.5		0.004		0.01		0.006	TC035476
Troussage	31 9 107 5	3	75	55	0.9	3.61	5	0.7	710	21	6.17	< 0.5		0.003		0.01		0.033	TC035478
TC035482 0.058 0.01 0.001 <0.5 7.85 ≤ 5.40 0.9 3.71 ≤0.5 2.5 181 TC035483 <0.001	39 4	3	117	18	< 0.5	3.2	<2	1	550			< 0.5		0.002		< 0.005		0.003	TC035480
TC035484	71 5	7	181	25	< 0.5	3.71	<2		540			< 0.5		0.001		0.01		0.058	TC035482
TC035486	64 5 72 5	7	170	25	< 0.5	3.39	<2	0.8	480	5	7.73	< 0.5		0.003		0.009		0.026	TC035484
TC035488	63 5 154 7	15	213	38	<0.5	5.16	<2 2	0.7	360	5	7.56	< 0.5		0.021		0.022		0.006	TC035486
TC035490 0.009 0.008 0.007 < 0.5 8.47 13 590 0.8 <2 4.14 < 0.5 27 120 TC035491 0.007 < 0.005	101 6 115	11	157	29	<0.5	4.18		0.8	540	11	7.98	< 0.5		0.004		< 0.005		0.107	TC035488
TC035492	112 6 131 6																		TC035490
TC035494 0.008 <0.005 0.004 <0.5 8.36 13 530 0.9 <2 4.17 <0.5 29 124 TC035495 0.013 0.006 0.005 <0.5	112 7 127 1																		
TC035496 0.018 0.017 0.003 <0.5 8.58 21 640 1 2 4.08 <0.5 27 109 TC035497 0.002 0.021 0.003 <0.5	121 6 127 6																		
TC035497 0.002 0.021 0.003 <0.5 7.61 <5 460 1 <2 3.09 <0.5 20 91 TC035498 0.001 <0.005	137 6 132 5						<2	0.8											
TC035499 0.003 <0.005 0.004 <0.5 7.8 9 490 1 <2 2.88 <0.5 19 108 TC035500 0.001 0.007 0.001 <0.5	94 4 92 4	ç	91	20	< 0.5	3.09		1	460		7.61	< 0.5		0.003		0.021		0.002	TC035497
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	66 4	ϵ	108	19	< 0.5	2.88	<2	1	490	9	7.8	< 0.5		0.004		< 0.005		0.003	TC035499
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68 5 69 5	ϵ	119	19	< 0.5	3.41	<2	0.9	520		7.76	< 0.5		0.003		0.006		0.193	TC035601
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	86 6 91 6	8	139	28	< 0.5	3.93	<2	0.7	390	10	7.74	< 0.5		0.003		0.005		0.278	TC035603
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 4	3	129	18	< 0.5	3.27	<2	0.9	530		8.13	< 0.5		0.002		< 0.005		0.007	TC035605
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68 5 82 7	8	113	28		4.69	<2	0.7	360		8.33	< 0.5		0.005		0.01		0.001	TC035607
	83 5 107 4	10	72	15		1.48	<2	0.9	1010	8	7.69	< 0.5		0.002		< 0.005		0.005	TC035609
	76 80 5	8	146	24	0.9	2.85	<2	0.7	750	19	8.67	< 0.5		0.003		0.007		0.031	TC035611
TC035612 0.004 <0.005 0.001 <0.5 8.6 27 710 0.8 <2 3.1 0.9 30 150 TC035613 0.002 0.007 0.003 0.7 8.81 24 580 0.7 <2 2.1 0.8 18 82	88 6 91	ç	82	18	0.8	2.1	<2	0.7	580	24	8.81	0.7		0.003		0.007		0.002	TC035613
TC035614 0.002 <0.005 0.004 <0.5 8.51 26 660 0.7 <2 3.24 0.7 22 147 TC035615 0.013 0.009 0.004 <0.5 8.38 17 430 0.8 <2 2.06 1 18 67	75 5 105 5	10	67	18	1	2.06	<2	0.8	430	17	8.38	< 0.5		0.004		0.009		0.013	TC035615
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	71 5 76 5	7	113	22	0.6		<2	0.9	530		9.11	< 0.5							
TC035618 0.007 0.005 0.003 <0.5 8.81 11 530 0.8 <2 4.23 0.7 21 125 TC035619 0.004 0.005 0.003 <0.5 9.04 <5 570 0.8 <2 4.21 0.6 24 125	98 83 5	9	125	21	0.7	4.23	<2	0.8	530	11	8.81	< 0.5		0.003	_	0.005		0.007	TC035618
TC035620 0.011 <0.005 0.005 <0.5 8.68 15 600 0.9 <2 3.8 0.6 24 169 TC035621 0.011 <0.005 0.004 <0.5 8.55 13 640 0.9 <2 3.85 0.5 23 164	101 5 104 5	10	169	24	0.6	3.8	<2	0.9	600	15	8.68	< 0.5		0.005		< 0.005		0.011	TC035620
TC035622 0.006 0.015 0.032 <0.5 8.85 16 600 0.9<2 2.82<0.5 19 136 TC035623 0.012 <0.005 0.004 <0.5 8.15 7 620 0.9<2 3.86<0.5 27 156	64 5 88 5	ϵ	136	19	<0.5	2.82	<2	0.9	600		8.85	< 0.5		0.032		0.015		0.006	TC035622
TC035624 0.009 0.008 0.002 <0.5 8.6 13 520 1.1 <2 3.09 0.6 19 140 TC035625 0.006 <0.005 0.006 <0.5 8.61 13 600 0.9 <2 3.73 0.5 22 155	78 5 73 5	7	140	19	0.6	3.09	<2	1.1	520		8.6	< 0.5		0.002		0.008		0.009	TC035624
TC035626 0.006 <0.005 0.004 <0.5 8.31 21 600 0.9 <2 3.9 0.5 24 141	80 5	8	141	24	0.5	3.9	<2		600	21	8.31	< 0.5		0.004		< 0.005		0.006	TC035626
TC035627 0.008 0.007 0.008 <0.5 8.68 17 600 1 <2 4.15 0.6 25 150 TC035628 0.011 <0.005	86 49 4	4	109	19	< 0.5	3.11	<2		540	14	8.34	< 0.5		0.001		< 0.005		0.011	TC035628
TC035629 0.013 <0.005 0.004 <0.5 8.29 13 620 0.9 <2 4.17 <0.5 21 162 TC035630 0.008 <0.005	80 5 81 5	8	156	24	0.6	4.26	<2	0.9	650	17	8.62	0.6		0.004		< 0.005		0.008	TC035630
TC035631 0.011 0.006 0.004 <0.5 8.38 17 630 0.9 <2 4.07 0.5 22 163 TC035632 0.015 0.007 0.004 <0.5	76 5 75 5	7	140	21	<0.5	4.06	<2	0.9	600	12	8.14	< 0.5		0.004		0.007		0.015	TC035632
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	127 8 105 6																		
TC035665 0.003 0.011 0.008 <0.5 8.08 <5 470 0.7 <2 3.79 <0.5 31 219 TC035666 0.003 <0.005 0.007 <0.5 7.79 10 680 0.7 <2 3.26 0.5 34 272	109 102 6																		

TC035667	0.001	< 0.005	0.004	<0.5	7.79	11 60	0.7	<2	3.0	<0.5	30	215	100	5.59
TC035668	0.003	0.009	0.005	<0.5	7.49	17 80			5.20		27	234	95	5.65
TC035669 TC035670	0.008	<0.005 <0.005	0.005 0.005	<0.5 <0.5	7.72 7.84	12 69 19 71			3.8		28 28	221 205	88 105	5.74 5.56
TC035671	0.004	0.007	0.004	<0.5	8.11	20 66			3.6			176	93	5.64
TC035672	0.003	< 0.005	0.003	< 0.5	8.25	8 76			3.4		27	179	86	5.63
TC035673	0.007	<0.005	0.003	<0.5	7.86	8 74 21 73		<2	3.3	7 <0.5 9 <0.5	26 29	156	88 107	5.12 5.34
TC035674 TC035675	0.007	<0.005	0.002	<0.5 <0.5	7.95 8.33	21 73 24 51			3.59 2.54		29	155 87	94	5.24
TC035676	0.006	<0.005	0.004	0.8	7.92	19 71			3.52		24	150	92	5.18
TC035677	0.006	< 0.005	0.004	< 0.5	8.36	30 73		<2	3.2		25	114	93	5.38
TC035678 TC035679	0.004	<0.005 <0.005	0.004 0.003	<0.5 <0.5	8.22 8.29	71 68 26 73		<2 <2	3.8		26 24	147 138	99 89	5.84 5.32
TC035680	0.004	<0.005	0.003	<0.5	7.95	38 71		<2	4.2		23	122	97	5.19
TC035681	0.003	< 0.005	0.003	<0.5	8.03	91 70			4.3	3 < 0.5	23	114	87	5.52
TC035682	0.003	< 0.005	0.002	< 0.5	7.8	56 68			4.00		22	117	79	5.19
TC035683	0.005	<0.005 <0.005	0.002	<0.5	7.88	49 66 22 66		<2	3.9		23	128 119	87 73	5.2 4.94
TC035684 TC035685	0.005	<0.005	0.002	<0.5	7.83 7.92	22 66 66 64			4.0		23	105	82	5.16
TC276201	0.039	0.007	0.008	<0.5	9.1	21 31			6.3		42	111	195	7.59
TC276202	0.036	< 0.005	0.007	< 0.5	8.85	23 28		4			34	102	180	7.07
TC276203 TC276204	0.069 0.021	<0.005 <0.005	0.005 0.004	<0.5 <0.5	8.18 8.88	16 37 18 38		<2	3.45	5 < 0.5 5 < 0.5	22 33	71 87	207 170	6.67
TC276204 TC276205	0.021	0.005	0.004	<0.5	8.39	17 36			4.69	9 < 0.5	30	181	114	7.54
TC276206	0.026	0.011	0.007	<0.5	8.44	10 26		<2	5.6		35	104	161	7.12
TC276207	0.006	< 0.005	0.005	<0.5	8.65	9 76		4		3 < 0.5	22	219	59	5.42
TC276208 TC276209	0.056	0.008 <0.005	0.004	<0.5 <0.5	8.52 8.97 <5	12 34 49		<2	5.00		33 34	183 188	142 122	9.02 8.28
TC276210	0.023	0.011	0.006	<0.5	9.21	12 43		<2	4.73		31	141	133	6.3
TC276211	0.035	0.011	0.006	< 0.5	9.15	11 48	0.9		3 4.60	5<0.5	30	124	129	6.43
TC276212	0.015	0.005	0.004	<0.5	8.5	7 33		-	5.13	3 < 0.5	23	101	120	5.58
TC276213 TC276214	0.043	0.006 <0.005	0.006	<0.5 <0.5	8.6 8.12	15 44 5 30		2	2 4.58 3 5.6	3 <0.5 7 <0.5	29 26	147 121	122 90	6.76
TC276214 TC276215	0.015	<0.005	0.005	<0.5	8.12	11 42		3			29	130	143	6.25
TC276216	0.014	< 0.005	0.006	0.7	7.23	18 66	0.8	2	2.94	1 0.	7 36	293	119	6.09
TC276217	0.008	<0.005	0.009	<0.5	7.83	28 26		2			31	136	187	6.78
TC276218 TC276219	0.01 0.152	<0.005	0.006 0.007	<0.5	7.72 8.63	38 43 36 35		<2	4.65		27 29	130 146	140 149	6.9 7.88
TC276220	0.235	<0.005	0.007	0.8	8.55	51 38			_		29	137	149	7.92
TC276221	0.034	0.005	0.007	<0.5	8.13	39 34		(27	114	124	6.73
TC276222	0.031	<0.005	0.007	<0.5	8.3	41 51		- 3			30	153	145	7.95
TC276223 TC276224	0.01	<0.005 <0.005	0.005	<0.5 <0.5	8.48 8.41	28 36 35 38		<2	4.4		30 6 28	139 129	130 121	7.04 6.77
TC276224 TC276225	0.026	<0.005	0.005	<0.5	8.27	40 41		- 2	2 4.4		26	129	113	7.04
TC276226	0.185	<0.005	0.003	<0.5	8.32	30 47		<2	4.6		30	139	116	7.6
TC276227	0.279	0.074	0.005	< 0.5	8.52	21 41			4.39		34	216	132	9.55
TC276228 TC276229	0.028	<0.005 <0.005	0.004 0.005	<0.5 <0.5	8.38 8.53	38 34 21 41			4.2	2 <0.5 7 <0.5	32 32	117 174	152 118	6.62 8.39
TC276230	0.03	<0.005	0.005	<0.5	7.67	13 38			4.4		28	192	137	8.29
TC276231	0.741	< 0.005	0.006	< 0.5	6.9	14 33		<2	4.		34	337	122	15.1
TC276651	0.01	<0.005	0.004	<0.5	8.25	9 46			3.6		25	125	119	5.17
TC276652 TC276653	0.004	<0.005 <0.005	0.003 <0.001	<0.5 <0.5	7.99 <5 8.36 <5	44		<2	3.55		24 25	115 129	104 107	4.83 5.2
TC276654	0.003	<0.005	0.006	0.6	7	8 46		<2	3.1		18	101	100	4.11
TC276655	0.003	< 0.005	0.002	< 0.5	8.22 < 5	48		<2	3.43		22	125	93	4.99
TC276656	0.012	<0.005	0.003	<0.5	8.11	10 47			3.53	3 < 0.5	21	130	88	4.97
TC276657 TC276658	0.002 0.002	<0.005 <0.005	0.002 0.002	<0.5 <0.5	7.75 8.37 <5	14 44 61	1 1	.0	2.63	2 < 0.5	21 19	125 107	92 51	4.75 4.82
TC276659	0.002	<0.005	0.002	<0.5	8.3	5 50		<2	3.43		22	124	91	4.97
TC276660	0.001	< 0.005	0.001	<0.5	7.76 <5	47		<2	3.25		20	127	72	4.6
TC276661	0.002	<0.005	0.002	<0.5	8.16	6 54		<2 <2	3.14		18 20	118	62	4.58
TC276662 TC276663	0.003 <0.001	<0.005 <0.005	0.002 <0.001	<0.5 <0.5	8.3 7.57	11 53 13 54		<2	3.1	5 < 0.5 7 < 0.5	19	115 106	66 49	5.24
TC276664	0.004	<0.005	0.003	<0.5	8.16	17 52		<2	3.3		20	117	86	4.75
TC276665	0.001	<0.005	0.002	<0.5	8.01 <5	52		<2	3.52		19	119	75	4.97
TC276667 TC276668	0.258 0.008	<0.005 <0.005	0.003 0.003	<0.5 <0.5	8.04 8.17	42 62 32 46		<2 <2	3.14		23 20	116 100	124 88	6.02 5.43
TC276670	0.008	<0.005	0.003	1	8.14	52 56		<2	3.30		28	100	118	5.43
TC276671	0.037	< 0.005	0.002	<0.5	8.3	40 60	0 1	<2	4.00	< 0.5	29	107	134	5.95
TC276672	0.007	<0.005	0.004	<0.5	8.29	8 77		<2	3.69		26	159	91	6.08
TC276673 TC276674	0.028 0.022	<0.005 <0.005	<0.001	<0.5 <0.5	7.95 8.06	21 61 18 72		<2 <2	3.5		23 24	85 114	85 98	5.1
TC276675	0.11	<0.005	0.004	0.6	8.36	26 63		<2	4.		24	91	114	5.47
TC276676	0.046	< 0.005	0.004	<0.5	8.24	39 68			4.2	< 0.5	26	113	99	5.82
TC276677	0.106	<0.005	0.005	<0.5	7.02	39 60		<2	3.74		26	169	100	6.6
TC276678 TC276679	0.027 0.011	<0.005 <0.005	0.008 0.005	<0.5 <0.5	7.93 7.94	15 57 24 48		<2 <2	3.8° 4.0°		25 26	123 142	107 102	5.9 6.13
TC276680	<0.001	<0.005	0.001	<0.5	6.84	23 31		<2	2.0		15	48	51	4.61
TC276681	< 0.001	<0.005	0.001	<0.5	7.28	22 34		<2	2.23		10	55	46	3.84
TC276682	0.001	<0.005	0.002	<0.5	8.2	36 35		3	2.13		15	63	54	4.53
TC276683 TC276684	0.01	<0.005 <0.005	0.004 0.004	<0.5 <0.5	8.6 7.78	20 63 25 104			3 4.0	<0.5 5 <0.5	26 29	152 260	113 106	6.93
TC276685	0.003	<0.005	< 0.004	<0.5	8.99	21 51					21	63	52	5.11
TC276686	0.079	< 0.005	0.003	< 0.5	8.18	23 82					27	239	97	10.25
TC276687	0.086	<0.005	0.005	<0.5	8.3	16 77					27	189	104	8.19
TC276688 TC276689	0.006	<0.005 <0.005	0.001 0.004	<0.5 <0.5	8.61 8.21	12 49 20 95					17 27	118 241	44 94	5.07 10.1
TC276690			0.004	<0.5	8.49	13 96		3			30	194	108	9.06
- 02,0070	0.012	< 0.005			8.84	8 55		- 2			21			5.79
TC276691	0.012 0.183	< 0.005	0.002	< 0.5								121	74	
TC276691 TC276692	0.012 0.183 0.002	<0.005 <0.005	0.003	0.8	8.84	21 41	0.8	3	4.13	< 0.5	29	132	120	7.49
TC276691 TC276692 TC276693	0.012 0.183 0.002 0.006	<0.005 <0.005 <0.005	0.003 0.002	0.8 <0.5	8.84 8.82	21 41 21 42	0.8	3	4.11 4 4.41	2 <0.5 2 <0.5	29 34	132 158	120 112	7.49 7.97
TC276691 TC276692	0.012 0.183 0.002	<0.005 <0.005	0.003	0.8	8.84	21 41	0.8 0 0.8 0 0.8	3	3 4.12 4 4.42 3 4.20	2 <0.5 2 <0.5 5 <0.5	29	132	120	7.49
TC276691 TC276692 TC276693 TC276694 TC276696 TC276697	0.012 0.183 0.002 0.006 0.008 0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.003 0.002 0.002 <0.001 0.002	0.8 <0.5 <0.5 <0.5 <0.5	8.84 8.82 8.49 7.42 8.65	21 41 21 42 21 42 9 57 19 43	0 0.8 0 0.8 0 0.8 0 0.9 0 0.9	3 3 5 <2	3 4.12 4 4.42 8 4.20 5 3.11 4.5	2 <0.5 2 <0.5 5 <0.5 3 <0.5 5 <0.5	29 34 31 17 31	132 158 146 100 174	120 112 112 39 94	7.49 7.97 7.42 5.09 7.6
TC276691 TC276692 TC276693 TC276694 TC276696	0.012 0.183 0.002 0.006 0.008 0.002	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.003 0.002 0.002 <0.001	0.8 <0.5 <0.5 <0.5	8.84 8.82 8.49 7.42	21 41 21 42 21 42 9 57	0 0.8 0 0.8 0 0.8 0 0.9 0 0.9 0 0.8	3 3 5 <2	3 4.12 4 4.42 3 4.20 5 3.11 4.3 4.4	2 <0.5 2 <0.5 5 <0.5 3 <0.5 5 <0.5	29 34 31 17	132 158 146 100	120 112 112 39	7.49 7.97 7.42 5.09

ME-IC	_	ME-ICP6			ME-ICP6		ME-ICP6		ME-ICP6		ME-ICP6	ME-ICP6	ME-ICP6		ME-ICP6	S-IR08
%		Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	ppm	Pb ppm	S %	Sb ppm	Sr ppm	Ti %	ppm	W ppm	Zn ppm	%
	1.01	1.72	632 564	2	1.84	39 39	1020 1050	13 14	0.05	<5 <5	362 334	0.51	151		91 98	
	1.11 1.14	1.86 1.93	724 683	2 2		40 43	970 1000	15 10		<5	323 323	0.48 0.51	161 170) 109 97	
1	1.22	2.38	961	2	1.64	63	910	24	0.08		373	0.54	195	<10	134	0.08
	1.27	2.35	1060 911	2		61 65	830 840	13 19		<5 <5	383 334	0.58	208		138 132	
	1.3	2.54	939	1	1.75	58	920	14	0.03	<5	493	0.5	184	<10	97	0.03
	1.24	2.52 2.34	958 862	3		55 51	930 920	6 10	0.03	<5	489 434	0.47	169 173	<10 <10	101 95	0.03
	1.2	2.31	1030 848	2	1.56 1.71	50 44	1050 990	10			412	0.45	168 174		99 97	0.05
1	1.17	2.38	837	2	1.85	42	900	12	0.04	<5	452	0.48	177	<10	91	0.04
	1.12 1.14	2.13 1.81	644 738	2		45 38	1060 850	9		<5 <5	386 405	0.45 0.46		<10	92	
	1.15	2.09	791 777	3		41 44	850 840	9		<5 <5	431 425	0.49	164 165	<10	93 95	
0).93	2.23	960	3	1.72	45	810	8	0.07	<5	421	0.47	176	<10	94	0.08
).95).94	2.41 2.38	979 1010	2	1.91	45 48	730 750	7 5		<5 <5	448 398	0.48 0.52	183 197	<10 <10	91 96	0.07
	0.7	2.48 2.46	1090 1975	5	1.81	50 66	770 870	9		<5 <5	409 241	0.47 0.44	189 287	<10	98 113	0.12
0).66	4.27	1390	2	1.39	104	750	5	0.04	<5	293	0.4	234	<10	86	NSS
).73).39	4.2 7.77	1420 1335	4		121 249	770 570	9		<5 <5	286 223	0.43	249		95 98	0.07
	0.43	6.96 6.55	1180 1095	3		226 199	540 570	16 17		<5 <5	221 224	0.29	228 229		97 97	
0).47	6.83	1155	3	0.71	219	610	14	0.45	<5	206	0.31	232	<10	90	0.5
	0.6	6.46 3.37	1155 962	3		213 79	600 940	8 10		<5 <5	228 264	0.34	233		100	0.33
	1.55	3.42 3.4	973 968	2 2		83 85	990 940	12 10		<5	265 274	0.44 0.45	190 194		133 129	
1	1.45	2.63	953	2	1.82	65	820	9	0.04	<5	300	0.48	183	<10	123	0.04
	1.42	3.17	986 954	3	1.64 1.61	81 81	900 910	8	0.06	<5 <5	279 253	0.43	175 180		125 124	0.06
1	1.43	3.18	941	2	1.53	80	880	14	0.06	<5	256	0.43	182	<10	123	0.06
	1.1	1.23 1.27	798 856	2	1.36	36 35	1370 1120	9		<5 <5	254 295	0.38 0.45	118 148	<10	100	0.05
	1.32	0.96	788 631	2 2		27 27	780 940	10		<5 <5	258 248	0.48 0.38			111 107	0.07
1	1.74	0.82	918	4	1.13	30	670	15	0.2	<5	177	0.42	155	<10	98	0.21
	1.42 1.59	0.99	901 1010	3		30 25	780 740	14 11		<5 <5	251 261	0.43	154 156		110 103	
1	1.54	0.93	828	3	1.14	26	720	16	0.17	<5	240	0.41	139	<10	110	0.15
	1.52 1.65	1.25	733 729	3	1.31 1.22	35 28	580 650	14 10		<5 5	211 258	0.47	184 161	<10	104 104	
	1.14	2.79	1115		1.91	50 53		9			418		249 493	<10	105	
	1.05	2.67 2.73	1235 1195		1.62 1.85	54	1020		0.14		370 399	0.61 0.54			122 120	
	1.06 1.17	2.79 2.64	1260 1140	<1 <1	1.71 1.82	57 50		9		<5 <5	382 399	0.64	491	<10 <10	120 109	
0).84	1.72	769	<1	1.81	35	1130	7	0.12	<5	374	0.43	113	<10	126	0.09
).61).95	1.75 2.15	11450 1130	<1 <1	1.51 1.93	54 56	1140 750	8		<5 <5	507 361	0.36	117 168		230 116	0.06
	1.09	1.74	704	<1	2.01	39	980	8	0.03	<5	386 407	0.61	151	<10	115	0.04
0).98	2.29 2.37	1240 1275		1.93 1.83	56 55	930	6	0.09	<5 <5	392	0.58 0.61			140 136	
	0.9	2.79	1015 1105		1.98	59 64	660 800	5			388 372	0.46			105 113	
1	1.03	2.35	1105	<1	2.06	50	800	6	0.04	<5	420	0.49	165	<10	103	0.04
).67).76	3.62	1465 1205		1.61 1.68	76 62	710 730	6		<5 <5	326 365	0.51 0.52	242		113 112	
	1.13	2.73 2.74	1130 1120	<1 <1	1.8 1.87	52 49	950 970	4 9		<5 <5	400 410	0.54 0.49	306	<10 <10	117 110	0.17
1	1.16	2.71	1170	<1	1.87	52	1000	5	0.13	<5	417	0.49	230	<10	111	0.14
1	1.18	2.83	1180 1195	<1 <1	1.88	52 52	990 960	9 5		<5 <5	425 390	0.55 0.56		<10	113 114	0.24
	1.11	2.75	1095	<1	1.92	51	970	5	0.13	<5	423	0.5	258	<10	105	0.11
	1.21 1.19	2.64	1125 1145	<1 <1	1.83 1.89	48 52	990 980	7		8		0.49		<10	112	0.12
	1.3	2.62 1.82	1065 854	<1 <1	1.79 1.68	47 40	970 1120	6 19		<5 <5	480 411	0.5 0.45	205 139	<10 <10	147 112	0.12
	1.01	2.04	792		1.64	46	1050	14	0.06	7	391	0.43			105	
	1	1.82	813 713		1.7 1.67	44	1010 1030	9		<5 <5	401 393	0.52	148		110 121	
).94	1.96	885	<1	1.98	42	880	7	0.04	<5	417	0.61	198	<10	129	0.04
).88).75	2.65 2.71	931 1115	<1 <1	1.78 1.8	49 47	950 990	5		<5 <5	411 383	0.58 0.62	198	<10 <10	121 107	0.03
0).71 1.1	2.82 1.72	1185 815	<1 <1	1.87 2.27	47 35	930 740	3 7	0.04		396 455	0.56 0.65			108 89	0.03
0).83	2.47	986	<1	1.94	45	890	4	0.04	<5	416	0.59	197	<10	102	0.04
).69 1.59	3.09 2.11	1315 801	<1 <1	2.01 1.07	47 66	840 660	10 19		<5	396 275	0.57 0.47			106 158	
2	2.47	1.36	840	1	1.21	30	620	15	0.1	<5	169	0.34	104	10	89	0.08
	1.69 1.55	1.6 2.17	892 845	<1	1.77 1.27	30 61	850 670	12 12		<5 <5	261 271	0.39 0.45	130 170		115 149	
1	1.59	2.22 1.55	1050 883	2		66 43		19 17	0.18	<5	243	0.43	171	<10	156 128	0.10
1	1.62	2.12	883 875	1	1.26	56	570	16	0.3	<5 <5	263 244	0.46	177	<10 <10	148	0.3
	1.47 1.66	1.46 1.98	780 958	2 <1	1.03	33 44	1000 670	27 14			308 282	0.4 0.49			199 128	
1	1.69	2.01	980	<1	1.46	43	770	17	0.23	5	284	0.48	175	<10	129	0.18
	1.52 1.58	2.31	1060 1145	<1 <1	1.4 1.52	53 54	650 640	12 11	0.15	<5 7	300 297	0.53	186 191	<10	139	0.14
1	1.59	2.53	1220	<1	1.61	74	630	18	0.17		333	0.5	193	<10	180	0.10
1	1.53 1.65	2.5	1190 967	<1 <1	1.62 1.62	70 54	630 620	18 14			329 294	0.5	193 169	<10	167) 118	
	1.49 2.06	2.47 2.01	1155 1180	<1 <1	1.56 1.43	66 64	640 710	17 17			328 200	0.48 0.41	185 157		160 193	
1	1.66	2.34	1085	<1	1.6	63	660	24	0.24	<5	301	0.51	185	<10	161	0.18
	1.55 1.69	2.38 2.48	1145 1165	<1 <1	1.63 1.68	64 71	650 700	17 12		<5 <5	326 337	0.47	178 188	<10	164) 169	
1	1.28	1.87	890	<1	2.1	40	750	12	0.03	<5	432	0.57	171	<10	106	0.03
	1.56 1.62	2.49	1110 1170	<1 <1	1.62 1.69	65 65	680 720	19 16		<5 <5	326 336	0.48	180	<10 <10	147 160	0.23
- 1	1.59	2.38	1120	<1	1.66	62	710	28	0.26		317	0.49	182	<10	149	0.25
1				<1	1.63	59	670	11	0.2	7	317	0.46		10	139	0.18
1	1.51	2.33 4.54	1070 1115		1.19	169	730	8		<5	219	0.38	264		83	3.57
1 1 0	1.51			<1			730 720 640	8 6 3	3.29 1.11		219 261 308	0.38 0.38 0.42	264 215 229	10		

1.26	2.94	1005	<1	1.82	81	680	8	0.45	<5	282	0.38	188	<10	101	0.48
1.29	3.55	896	<1	1.24	93	940	13	0.55	<5	243	0.39	196		121	0.56
1.23	3.11	980	<1	1.63	83	740	9	0.57	9	290	0.39	187	<10	107	0.55
1.36	3.12	1050	<1	1.59	82	830	10	0.29	<5	266	0.4	190		121	0.27
1.33	3.08	1055	<1	1.67	78	840	11	0.29	<5	273	0.4	185		116	0.31
1.44	2.98	1055	<1	1.78	66	830	10	0.27	<5	280	0.41	190		121	0.23
1.47	2.87	1035	1	1.7	73	900	6		<5	268	0.42	183		118	0.22
1.49	2.91	1080 862	2	1.62 1.45	77	990 820	10 16	0.21	<5 <5	271 263	0.45	191 159	<10 <10	133 135	0.19
1.47	1.76 2.86		1	1.43	37 75	940	8	0.14	? <5	203	0.45 0.42	180		120	0.12
1.65	2.65	1040	1	1.79	61	970	12	0.23	<5	263	0.42	192		133	0.07
1.47	2.89	1120	1	1.74	75	940	7	0.34	<5	280	0.45	192		133	0.26
1.54	2.85	1075	1	1.8	68	930	9		<5	283	0.43	183		124	0.19
1.5	2.6	1045	2	1.63	65	930	8	0.16	<5	311	0.44	180	<10	125	0.15
1.53	2.48	1055	1	1.57	58	790	7	0.23	<5	258	0.41	168	<10	114	0.2
1.48	2.48	1015	1	1.6	57	800	6		<5	263	0.41	169		109	0.26
1.46	2.54	1030	2	1.69	63	880	8	0.23	<5	277	0.43	177		115	0.19
1.43	2.48	1000	1	1.8	55	840	6		<5	262	0.43	177		104	0.09
1.54	2.41	1025	1	1.64	56	780	10	0.17		262	0.41	166		110	0.15
0.94	3.55 3.28	1300 1200	2		47 47	1250 1090	10	0.24	<5	571 529	0.56	319 293		102 88	0.22
1.22	1.78	1060	4	2.01	31	1500	12	0.18	<5	362	0.47	215		90	0.29
1.35	2.31	1190	4		38	1480	12	0.17	6		0.46	245		89	0.23
1.01	3.16	1165	2	2.02	60	1110	12	0.04	5	425	0.51	304		90	0.16
0.85	3.22	1185	1	1.99	45	1070	9	0.22	<5	528	0.47	283		82	0.18
1.4	2.4	1065	1	2.24	60	1060	10	0.05	<5	387	0.59	191	10	111	0.16
1.04	3.15		2	2.09	59	1170	9		<5	469	0.53	387		92	0.14
1.15	3.14	1250	2		58	1150	11	0.12	7		0.59	357		102	0.25
1.27	3.06	1170	2		56	980	10	0.09	<5	492	0.5	242		98	0.14
1.24	2.97	1170	1	2.24	55	1110	16	0.09	5		0.5	243		96	0.16
1.04	2.87	1090 1130	1 2	2.44 2.17	39 54	990 1030	6 10	0.01	<5 <5	526 466	0.44	211 272	<10 <10	72 95	0.07
0.93	3.08	1130	1	2.17	42	1030	7	0.09	<5 <5	513	0.49	272		72	0.16
1.15	2.78		2		51	1020	10	0.02	9		0.47	242		90	0.03
1.38	3.56		2		151	820	20	0.17	_	185	0.52	215		269	0.29
0.78	3.14	1115	1	1.6	58	1090	12	0.07	6		0.46	247		103	0.25
0.92	2.35	995	2	1.6	45	1070	11	0.12		382	0.47	269		126	0.3
1	2.96	1140	2		49	1120	14	0.09	6		0.5	304		141	0.2
0.95	2.85	1145	2		50	1100	16	0.14	6		0.51	312		150	0.24
0.92	2.76	1105	2	1.71	43	970	9	0.11	<5	390	0.46	249		135	0.24
0.91	2.87	1145	2		50	1080	13	0.11	. 6		0.48	312		148	0.24
1.01	2.94	1180	1	1.91	47	1070	9	0.11	<5 .5	436	0.49	268		151	0.29
0.95	2.79 2.85	1100 1065	1	1.71 1.76	50 46	980 1050	13 14	0.09	<5 <5	384 381	0.47	260 275		140 130	0.16
0.93	2.83	1110	1	1.74	50	1090	9	0.09) <5	382	0.49	305		134	0.22
1.11	2.88	1215	2		58	1170	6		<5	422	0.58	415		102	0.14
0.97	2.76	1160	2	1.67	51	1080	9	0.08	<5	374	0.45	241	<10	141	0.24
1.16	3.03	1195	2		57	1070	11	0.07	6		0.53	346		108	0.18
1.07	2.81	1125	1	2.05	49	1030	8	0.05	<5	417	0.51	342	<10	93	0.15
0.91	2.84	1245	1	1.79	55	960	10	0.11	6	360	0.6	707	<10	105	0.21
1.18	2.45		2		51	1090	6		9		0.49	182		110	0.05
1.14	2.29		2	1.55	46	1070	13	0.06	5		0.46	170		105	0.05
1.21	2.51	1065	1	1.68	54	1100	10			539	0.48	184		107	0.04
0.98	1.79 2.41	758 1005	1 2	1.36 1.71	50 53	1320 1070	8	0.1	<5	369 536	0.42	134 178		97 104	0.09
1.15	2.35	949	1	1.71	51	1070	6	0.04	6		0.47	178		104	0.04
1.13			1	1.63	46	970	10		5		0.48	171		100	0.04
1.31	1.69	1365	1	1.77	44	980	8	0.06	8		0.52	153		110	0.05
1.22	2.4	964	2		50	1000	6		13	530	0.49	176		101	0.03
1.11	2.1	928	1	1.76	44	950	5	0.05	10	454	0.47	157	<10	95	0.05
1.17	1.91	906	1	1.87	43	1000	13	0.06	8	418	0.52	153	<10	100	0.06
1.21	1.99	868	1		43	940	7	0.05		453	0.5		<10	101	0.05
1.04	1.67	1435	2		37	950	7	0.05	8		0.55		<10	135	0.05
1.2	2.23	794	1	1.78	47	1070	10		9		0.49	167		111	0.05
1.14	2.01	824 920	1 2	1.83 1.56	45 43	990 980	12 10	0.06	10 16	422 386	0.52 0.47	164 200		107 111	0.07
1.15	2.1	920	2	1.79	38	960	9	0.13	10	385	0.47	189		108	0.12
1.13	2.09		2		44	990	12	0.13	11	390	0.45	201		111	0.13
1.33	2.34		2		44	1000	13	0.18	14		0.48	205	<10	114	0.15
1.21	2.41	1030	1	1.87	58	900	10	0.08		386	0.66	226		130	0.06
1.3	2.23	988	1	1.46	39	910	11	0.12	14	480	0.43	172		106	0.13
1.28	2.35	989	2	1.57	43	1030	10	0.13	10	451	0.47	211		112	0.12
1.36			1	1.57	46	1020	14		12	507	0.47	189		125	0.13
1.33	2.49 2.67	1070 933	3	1.67 1.69	47 53	980 920	11 10	0.17		476 406	0.48	204 253		118 115	0.14
1.23	2.48		3		47	980	10	0.07	<3 5	406	0.57	204		113	0.05
1.19			2		50	900	11	0.07		413	0.49	223		104	0.06
1.13	0.92	667	3		33	640	13	0.18		272	0.36	107		115	0.16
1.13	0.62	525	2	1.16	28	690	10			240	0.4	118	<10	103	0.1
1.55	0.81	565	1	1.03	37	680	12	0.23		195	0.41		<10	114	0.24
1.24	2.76		<1	1.87	52	900	11	0.11	<5	395	0.5	274		108	0.14
1.03	2.96		1	1.7	52	930	11	0.29		379	0.64	484		104	0.3
1.4	1.34	953	1	1.57	28	620	11	0.13	<5	290	0.49	166		82	0.12
1.16	2.67 2.67	1150 1140	1	1.7 1.78	55 53	1030 910	9		<5 <5	355 373	0.6	441 328		111 103	0.21
1.17	2.67	951	<1	2.11	53 43	820	9		<> <5	3/3 414	0.53	328 174		103	0.15
1.14	2.68		1	1.71	53	970	11	0.04		370	0.57		<10	103	0.03
1.14	2.88			1.88	55	960	11	0.13	<5	416	0.56	379		103	0.17
1.2	2.39		<1	1.93	47	1180	6		<5	472	0.59	178		108	0.05
0.88	3.38	1155	<1	1.83	56	1090	5		<5	392	0.62	224	<10	109	0.04
0.88	2.9		1	1.99	59	1080	9		<5	396	0.65	267		110	0.06
0.91	2.91	1215		1.89	56	1250	5	0.05	<5	390	0.66	238		111	0.05
1.02	1.52	2150		1.64	42	900	8		<5	412	0.43	125		120	0.09
0.87	2.92	1275		1.94	55	1070	5			405	0.66	252		109	0.05
0.44	2.8	1230 1195	1 2	2.24 2.02	37 44	980 1010	7		<5 <5	442 401	0.54	240	<10 <10	79 100	0.02
0.67	2.81	1195	L 2	2.02	44	1010	4	0.03	\sim	401	0.62	251	<10	100	0.03

Appendix 3: CANALASK-ONION Project area Sample Descriptions, Results

Appendix 3a: Rock sample descriptions, results Appendix 3b: Silt sample descriptions, results Appendix 3c: Whole Rock sample descriptions, results Appendix 3d: Year-2005 sample descriptions, results

SILT SAMPLE DESCRIPTION SHEET (Appendix 3b)

"ONION" Block, Xstrata plc (formerly Falconbridge Ltd.)
July - August, 2006

Sample No.	Easting NAD 83	Northing NAD 83	Zone	% Fines	Colour	Stream Grade	Stream Width	Date	Sampler	Comments
							(m)			
TC035295	521500	6872123	7	20	Brown	Steep	1	Aug. 24	BR/NVW	Dry Creek
TC035296	521518	6872120	7	20	Grey Brown	Steep	1	Aug. 24	BR/NVW	Dry Creek
TC035297	521540	6872156	7	20	Grey Brown	Steep	2	Aug. 24	BR/NVW	
TC035298	521555	6872186	7	30	Grey Brown	Steep	3	Aug. 24	BR/NVW	Dry Creek
TC035299	521586	6872276	7	30	Grey	Steep	4	Aug. 24	BR/NVW	Dry Creek
TC035300	521641	6872349	7	30	Dark Brown	Steep	4	Aug. 24	BR/NVW	
TC035351	521902	6872531	7	40	Brown	Steep	4	Aug. 24	BR/NVW	Dry Creek
TC035352	522017	6872661	7	40	Grey Brown	Steep	3	Aug. 24	BR/NVW	Dry Creek
TC035353	522212	6872755	7	30	Brown	Steep	7	Aug. 24	BR/NVW	Dry Creek
TC035354	522341	6873020	7	30	Grey Brown	Moderate	10	Aug. 24	BR/NVW	Dry Creek

	PGM-ICP23	PGM-ICP23	PGM-ICP23	ME-ICP61														
SAMPLE	Au	Pt	Pd	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	K	La
DESCRIPTION	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm
C035295	0.005	0.028	0.028	<0.5	2.73	6	160	<0.5	<2	2.45	<0.5	90	2060	118	7.7	10	0.27	<10
C035296	0.004	0.059	0.084	<0.5	2.48	<5	120	<0.5	<2	1.46	<0.5	125	3440	148	8.96	<10	0.27	<10
C035297	0.004	0.052	0.058	<0.5	1.62	<5	80	<0.5	<2	1.23	<0.5	136	4320	137	9.81	<10	0.15	10
C035298	0.002	0.097	0.082	<0.5	1.48	<5	60	<0.5	<2	1.23	<0.5	148	4750	133	10.35	<10	0.13	10
C035299	0.016	0.076	0.087	<0.5	1.5	21	60	<0.5	<2	1.05	<0.5	139	4450	124	9.64	<10	0.14	10
C035300	0.014	0.092	0.079	<0.5	2.57	29	140	<0.5	<2	1.36	<0.5	116	4570	157	9.43	<10	0.35	<10
C035351	0.005	0.038	0.05	<0.5	2.75	<5	220	<0.5	<2	1.74	<0.5	95	3630	208	8.63	10	0.3	<10
C035352	0.011	0.033	0.034	0.6	4.99	15	520	0.7	<2	2.17	<0.5	63	2700	467	7.98	10	0.69	10
C035353	0.014	0.012	0.014	0.5	6.47	<5	670	1.1	<2	3.05	<0.5	45	1050	747	6.75	10	1.16	20
C035354	0.038	0.013	0.015	<0.5	5.75	<5	580	0.9	<2	2.51	<0.5	36	1140	490	5.58	10	1.02	10

ME-ICP61	S-IR08																	
Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U	V	W	Zn	S
%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
14.65	1280	<1	0.51	1245	310	3	0.05	<5	13	101	<20	0.16	<10	<10	84	<10	84	0.04
16.85	1280	<1	0.4	1655	210	2	0.03	5	12	74	<20	0.14	<10	<10	91	<10	88	0.04
18.7	1330	<1	0.25	1900	170	<2	0.04	<5	9	53	<20	0.11	<10	<10	71	<10	98	0.03
19.45	1345	<1	0.22	2020	150	2	0.04	<5	9	47	<20	0.1	<10	<10	70	<10	100	0.03
18.05	1245	<1	0.21	1910	150	<2	0.05	<5	8	49	<20	0.1	10	<10	68	10	94	0.04
14.2	1135	1	0.34	1570	240	14	0.35	9	11	100	<20	0.16	20	<10	100	10	108	0.33
14.7	1145	1	0.41	1490	270	11	0.2	11	13	122	<20	0.16	<10	10	103	<10	100	0.22
9.06	1155	16	0.99	886	700	13	0.25	8	16	232	<20	0.26	10	10	135	<10	122	0.26
5.49	1150	26	1.22	485	940	14	0.19	10	16	355	<20	0.28	10	<10	136	<10	95	0.17
5.09	991	18	1.23	433	850	13	0.16	6	14	301	<20	0.26	10	<10	119	<10	86	0.16

Sample Locations and Descriptions

Kluane Reconnaissance, 2005 (Appendix 3d)

CAMPLE	LITM ZONE	LITM F	LITM N	CAMPLE	DOCK TYPE	DOCK CODE	ICAMPLE TVD	ODAINI CIZE	TEVTUDE	CHI DI IA	CLII DLI4	ICLII DI IO	CLII DI IO	ΙΛ\/	СТГ	CTDE	ID I A	Z1N D	LIC-
SAMPLE DESCRIPTION	UTM_ZONE	O I M_E		SAMPLE DESCRIPTION	ROCK_TYPE	ROCK_CODE	SAMPLE_TYP	GRAIN_SIZE	TEXTURE	SULPH1	SULPH1	SULPH2	SULPH2_	AV.	211	STRD	IP AZ	ZIIP	LIS
WA49034	7	524344		WA49034			float	fine	massive					+		\dashv	+	-	+
WA49035	7	524340		WA49035	dacite		float	fine	massive					+	-	+	+	-	+
WA49036	7	524336		WA49036	adollo		float	0	macorro					+		\dashv	+		+
WA49037	7	524332		WA49037			outcrop							+		\dashv	+		+
WA49038	7	524334		WA49038			outcrop									\neg	\neg		+
WA49039	7	524297		WA49039			float									\neg	\neg		+
WA49040	7	524332		WA49040			float										\neg		\top
WA49041	7	524344		WA49041			float												
WA49042	7	524344	6869413	WA49042	massive sulphid	e	float												
WA49043	7	520120	6874092	WA49043	peridotite		outcrop	medium	massive										
WA49044	7	520092	6874052	WA49044	petmatitic gabbr	0	outcrop	medium	massive, serper	ntinized									
WA49045	7	520110	6874084	WA49045			outcrop	fine	aphanitic, massi	ive									
WA49046	7	520047	6874046	WA49046	dacite		outcrop	medium	massive										
WA49047	7	520048	6874037	WA49047	dunnite		outcrop	fine	aphanitic, serpe	ntinized									
WA49048	7	520114	6873126	WA49048			outcrop	fine	aphanitic, massi	ive									
WA49049	7	520102		WA49049			outcrop	fine	aphanitic, massi	ive									
WA49050	7	520012		WA49050	peridotite		outcrop	fine	aphanitic			ļ							_
WA49051	7	519860		WA49051	andesite		outcrop	fine								$\perp \! \! \! \perp$			
WA49052	7	519850		WA49052	peridotite	ļ	outcrop	fine	aphanitic, massi			ļ				⊥ L	丄	_	_
WA49053	7	519890		WA49053	peridotite	ļ	outcrop	fine	aphanitic, massi			ļ				⊥ ↓	\bot		_
WA49054	7	519897		WA49054	dacite		float	fine	massive	pyrite	1%			\perp	<u> </u>	$\bot\!\!\!\!\bot$		_	4
WA49055	7	520255		WA49055	peridotite		outcrop	fine	possible adcum					\perp		$\bot\!$	$\perp \!\!\! \perp$	4	4
WA49056	7	520338		WA49056	peridotite		outcrop	fine	possible adcum	ulate				\perp	<u> </u>	$-\!\!\!\!+$	\dashv	4	4
WA49057	7	520350		WA49057	peridotite		outcrop	fine	massive		4.00/						_	_	_
WA49058	7	520401		WA49058	peridotite		outcrop	fine	massive	pyrrhotite	1-3%					$-\!\!\!+$		_	_
WA49059	7	520401		WA49059	peridotite		outcrop	fine	massive		4.00/					$-\!\!\!+$		_	_
WA49060	7	520400		WA49060 WA49061	peridotite		outcrop	fine	massive	pyrrohotit	1-3%			-		+	_	_	+
WA49061 WA49062	7	520397 520021		WA49062	peridotite		outcrop	fine	massive	pyrrhotite	1-3%			-		+	_	_	+
WA49063	7	520021		WA49063	gabbro gabbro		core	coarse coarse	massive massive	chalchopyr chalchopyr	5-8% 7-10%					-+	$-\!\!\!+\!\!\!\!-$	-	+
WA49063 WA49064	7	520021		WA49064	gabbro		outcrop	medium	massive	pyrrhotite	4-6%			+	-	+	+	-	+
WA49065	7	520951		WA49065	gabbro		outcrop	fine	massive	pyrrhotite	5-8%					-+	-	+	+
WA49066	7	520929		WA49066	peridotite		outcrop	medium	possible adcum	11.7	3 0 70			+		\dashv	+		+
WA49067	7	520894		WA49067	peridotite		outcrop	fine	possible adcum					+		\dashv	+		+
WA49068	7	585281		WA49068	peridotite		outcrop	fine	massive					+		\dashv	+		+
WA49069	7	585272		WA49069	N/A		chip	fine	sheared							\neg	\neg		+
WA49070	7	585266		WA49070	gabbro		outcrop	fine	massive	pyrrhotite	3-7%	chalchopyrite	2-4%						
WA49071	7	585266	6813628	WA49071	gabbro		outcrop	fine	massive	pyrrhotite	5-9%	chalchopyrite							
WA49072	7	585262	6813661	WA49072	ultramafic		outcrop	fine	massive										
WA49073	7	585265	6813647	WA49073	ultramafic		float	fine	massive										
WA49074	7	585268	6813636	WA49074			outcrop	fine	massive										
WA49075	7	582689	6814855	WA49075	massive sulphid	le	outcrop	fine	sheared	pyrrhotite		chalchopyrite							
WA49076				WA49076												\Box		$oldsymbol{ol}}}}}}}}}}}}} $	$oldsymbol{oldsymbol{oldsymbol{oldsymbol{\Box}}}$
WA49077				WA49077	ļ							ļ							_
WA49078				WA49078												$\bot\!\!\!\!\bot$	$\perp\!\!\!\perp$	_	4
WA49079				WA49079					<u> </u>					\perp	<u> </u>	$\bot\!\!\!\!\bot$		_	4
WA49080				WA49080	ļ				ļ					\perp	<u> </u>	$-\!\!\!\!+$	\dashv	4	4
WA49081				WA49081	 	1						-		+	\sqcup	\dashv	\dashv	-	+
WA49082				WA49082	 	1			1			 		+		$-\!\!\!\!+$	+	+	+
WA49083				WA49083	 	 	+		1			 		+	$\vdash \vdash$	\dashv	+	+	+
WA49084 WA49092				WA49084 WA49092	 	 	+		1			 		+	$\vdash \vdash$	\dashv	+	+	+
				WA49092 WA49093	 	 	-		 			 		+		+	+	+	+
WA49093 WA49094				WA49093 WA49094	1	+			 	1		1		+	⊢ ∤	+	+	+	+
WA49094 WA49095				WA49094 WA49095	 	1			1			 		+	H	+	+	+	+
WA49095 WA49096				WA49096	 	1			1			 		+	H	+	+	+	+
WA49090 WA49097				WA49097	 	 	+		<u> </u>			 		+		+	+	+	+
WA49097 WA49098				WA49098	 	 	+		<u> </u>			 		+		+	+	+	+
WA49099				WA49099										+	H	\dashv	+	+	+
WA49100				WA49100	 	 			<u> </u>	-		 		+	\vdash	\dashv	+	+	+
WA49302				WA49302	 	 	+		<u> </u>			 		+		+	+	+	+
				WA49303	 	 			<u> </u>	-		 		+	\vdash	\dashv	+	+	+
WA49303	•				1	ł	l	 	+					+	-	-+	$-\!\!\!\!\!+$		+
WA49303 WA49304				WA49304													- 1		

WA49309			WA49309													\top
WA49316			WA49316	i												+
WA49320			WA49320)												1
WA49321			WA49321													+
WA49323			WA49323													+
WA49330			WA49330							İ					-	+
WA49401	7	548112	6833233 WA49401													+
WA49402	7	582624	6814943 WA49402							İ					-	+
WA49403	7	646453	6754814 WA49403							İ					-	+
WA49404	7	646453	6754814 WA49404							İ					-	+
WA49405	7	646467	6754871 WA49405							İ					-	+
WA49406	7	646485	6754886 WA49406										+		-+	+
WA49407	- 1	0.0.00	WA49407												-	+
WA49409			WA49409					1		1			-	t	-	+
WA49410			WA49410					1				H			-	+
WA49411			WA49411										+		-+	+
WA49412			WA49412					1	1	<u> </u>			-		+	+
WA49413			WA49413												-	+
WA49414			WA49414												-	+
WA49417			WA49417												-	+
WA49331	7	519876	6874547 WA49331			outcrop							+		-+	+
WA49332	7	519554	6874567 WA49332			outcrop									-+	+
WA49333	7	519876	6874547 WA49333			outcrop	med	massive					+		-+	+
WA49334	7	519789	6874579 WA49334			chip	med	massive							-	+
WA49335	7	519789	6874579 WA49335			chip	med	massive							-	+
WA49336	7	519789	6874579 WA49336			chip	med	massive		İ					-	+
WA49337	7	519789	6874579 WA49337	gabbro		chip	med	massive					+		-+	+
WA49338	7	519789	6874579 WA49338			chip	med	massive		İ					-	+
WA49339	7	519789	6874579 WA49339			chip	med	massive					+		-+	+
WA49340	7	519789	6874579 WA49340			chip	med	massive		İ					-	+
WA49341	7	519789	6874579 WA49341	gabbro		chip	med	massive							-	+
WA49342	7	519789	6874579 WA49342			chip	med	massive		İ					-	+
WA49343	7	519789	6874579 WA49343			chip	med	massive					+		-+	+
WA49344	7	519789	6874579 WA49344			chip	med	massive					+		-+	+
WA49345	7	519789	6874579 WA49345			chip	med	massive		İ					-	+
WA49346	7	519789	6874579 WA49346			chip	med	massive					+		-+	+
WA49347	7	519789	6874580 WA49347		e .	outcrop	coarse	massive					+		-+	+
WA49348	7	519784	6874569 WA49348		_	outcrop						H			-	+
WA49349	7	519790	6874577 WA49349			outcrop		1	1	<u> </u>			-		+	+
WA49350	7	650413	6755991 WA49350		le	float		1				H			-	+
WA49351	7	647687	6753720 WA49351		-	outcrop		1				H			-	+
WA49351 WA49352	7	647617	6753761 WA49352			outcrop		1	1	<u> </u>			-		+	+
WA49354	7	647621	6753754 WA49354			outcrop		1						+	+	+
WA49356	7	647621	6753753 WA49356			outcrop		1				H			-	+
WA49357	7	650472	6756135 WA49357		le.	boulders		1			1				-+	+
*** * ***	- /	000772	57 50 155 WA-19557	massive sulpinu		Dodiuois	l			1						

	CRU-QC	PUL-QC	PUL-QC ME-XRF0	6IME-XRE06	ME-XREO	AME-XREOAM	E-XREOR	ME-XREO	ME-XREO	ME-XREO	AME-XRE(
GEN COMMEN	SAMPLE % Passing -2mm			Al2O3	Fe2O3				K2O	Cr2O3	TiO2
	DESCRIPTION %	%	% %	%	%	% %	0		%	%	%
possibly from ore pile		7 96	4								1
		8 99	1 49.2	8 18.3	5.67	7 15.42	3.34	3.3	0.25	0.01	0.65
possibly from ore pile	WA49036									<u> </u>	<u> </u>
	WA49037						\longrightarrow	 '	 '	└─ ─'	
	WA49038 WA49039		40.0	2 45.00	40.00	10.04	7.00	0.00	0.5	0.05	. 45
	WA49039 WA49040		48.2	3 15.62	12.03	10.94	7.03	2.66	0.5	0.05	1.58
	WA49040 WA49041						+		 		+
	WA49042						$\overline{}$		\vdash	\vdash	+
	WA49043		33.5	5 0.85	11.39	0.56	38	0.27	0.03	0.93	0.11
	WA49044		46.6				7.74				
	WA49045		33.9	3 0.94	12.59	0.8	37.18	0.24	0.03	0.41	0.12
	WA49046		41.8				6.53				
	WA49047		37.5				32.56				
	WA49048		32.9				36.79			0.91	
	WA49049		32.9				36.74				
andesite dike	WA49050 WA49051		32.9 38.4				37.51 8.84	0.22 0.13		1.02 0.06	
aliusalis ulvē	WA49051 WA49052	+	32.3				38				
	WA49052 WA49053	+	33.4				36.33				
rusty surface, dusty sulphide	WA49054		33.4	1.70	12.01	1.00	23.00	0.20	0.00	0.00	0.10
	WA49055		32.8	2 0.87	7 13.47	7 0.22	37.42	0.22	0.02	0.89	0.11
	WA49056		32.9				36.48				
	WA49057		32.7	8 0.63	3 13.29	0.4	36.89	0.24	0.02	0.88	0.08
dusty sulphide throughout sample	WA49058		31.4	3 1.04	11.74	1 0.39	33.81	0.15	0.06	0.68	0.09
dusty sulphide throughout sample. Site of trenching. Contact between limestone and ultramafic.	WA49059		29.9				33.61	0.17			
dusty sulhide throughout sample. Gossanous. Contact between limestone and ultramafic.	WA49060		32.8				35.08	0.18			
Contact between limestone and ultramafic.	WA49061		31.0				34.23	0.15		0.57	
Core from box 19 of DDH 97-079 at 93.72 meters.	WA49062		39.				32.21	0.48		0.5	
Core from box 27 of DDH 97-079 at 119 meters.	WA49063 WA49064		40.	3 5.78	15.56	5.31	26.26	0.62	0.4	0.41	0.58
Dusty sulphide, very finely disseminated throughout sample. Ridge is very rusty.	WA49064 WA49065					+	\longrightarrow		$\vdash \vdash$	 '	+
	WA49065 WA49066		33.5	2 0.97	7 9.93	3 0.58	38.7	0.13	0.03	0.91	0.11
	WA49067		32.9				37				
malachite rich outcrop with dusty sulphides throughout sample (trace)	WA49068										
Composite chip across 1m shear zone. Malachite rich outcrop. Rusted surface.	WA49069										
Sample taken from nose of synformal feature.	WA49070		38.2	3 5.91	1 15.1	1 4.32	17.98	0.03	0.12	0.25	0.49
	WA49071										
Aphanitic, black rock. Possibly felsic volcanic.	WA49072		47.0	6 17.41	1 10.02	2 4.19	6.34	2.94	5.48	0.02	0.95
Very weathered, oxidized surface.	WA49073									<u> </u>	<u> </u>
Very weathered surface. Rusty, malachite rich outcrop.	WA49074						\longrightarrow	 '	 '	└─ ─'	
Lower zone of Tom showing. Possible shear zone.	WA49075		24.5	0 00	10.00	1 70	24.00	0.00	0.40	0.7	7 04
	WA49076 WA49077		34.5 34.6				34.08 33.02	0.22 0.19			
	WA49077 WA49078		33.1				38.76	0.19			
	WA49079		32.1				33.11	0.17		0.95	
	WA49080		49.6				4.88	3.39		0.02	
	WA49081		33.5				37.2	0.2			
	WA49082		32.3				37.48	0.2			
	WA49083		35.2	4 2.17	7 12.75	0.57	35.07	0.15	0.04	0.54	0.18
	WA49084		32.3				37.47	0.17			
	WA49092		48.				9.15				
	WA49093		37.4				29.93				
	WA49094		43.7				20.21	0.23			
	WA49095 WA49096		33.1				36.61 34.09	0.13 0.19			
	WA49096 WA49097		36.8 33.6				34.09				
	WA49097 WA49098		38.7				34.78				
	WA49099	+	36.7				32.79				
	WA49100		37.6				29.57	0.19			
		+					6.5				
	WA49302		48.4	2 15.14	12.90	11.23	0.51	2.01			
	WA49302 WA49303		48.4				2.4				
				8 17.23 3 3.03	6.26 3 15.68	3.71 3 1.09			3.16 0.07	0.01 0.45	0.71

	WA49309	36.27	2.28	15.31	1.68	32.48	0.17	0.11	0.49	0.13
	WA49316	27.91	13	14.07	13.15	4.68	0.12	0.29	0.06	1.38
	WA49320	36.59	2.41	17.54	1.84	33.52	0.24	0.13	0.73	0.25
	WA49321	33.57	1.14	10.8	0.36	35.56	0.16	0.04	0.75	0.09
	WA49323	33.55	1.41	12.75	1.2	36.36	0.23	0.05	0.84	0.11
	WA49330	47.47	11.3	15.76	8.96	9.27	1.49	0.25	0.09	1.25
	WA49401	47.47	11.3	15.76	8.96	9.27	1.49	0.25	0.09	1.25
	WA49402	50.26	16.05	10.57	8.17	6.6	3.39	1.4	0.02	0.69
	WA49403	55.17	14.76	9.86	8.42	5.24	2.65	0.81	0.01	0.71
	WA49404									
	WA49405	37.54	3.71	15.89	3.51	28.69	0.26	0.14	0.37	0.34
	WA49406	36.56	3.09	16.05	2.29	30.74	0.25	0.07	0.42	0.24
	WA49407	41.71	15.53	14.13	4.09	13.65	2.16	0.31	0.17	1.09
	WA49409	32.96	0.78	13.4	0.14	37.21	0.27	0.05	0.93	0.08
	WA49410	32.74	0.82	14.34	0.33	37.08	0.17	0.04	0.84	0.09
	WA49411	33.05	0.81	13.08	0.4	37.46	0.22	0.03	0.84	0.08
	WA49412	32.84	0.65	13.28	0.32	38.01	0.22	0.03	0.69	0.07
	WA49413	37.72	2.65	12.04	1.89	33.01	0.28	0.14	0.65	0.27
	WA49414	47.46	11.39	15.89	8.89	9.36	1.57	0.24	0.08	1.18
	WA49417	47.48	11.35	15.85	8.89	9.41	1.57	0.25	0.08	1.19
	WA49331									
	WA49332									
	WA49333									
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49334									-
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49335									
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49336									
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49337									
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49338									
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49339					-		+		
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49340									
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49341				+				-	
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49342				+				-	
Chip sample across extremely weathered terrich at outcrop. 12 samples taken from this site from WA93331 to WA949346. Trace to 1% sulphides throughout.	WA49343					-		-		
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49344					-		-		
Chip sample across extremely weathered trench at outcrop. 12 samples taken from this site from WA49334 to WA494346. Trace to 1% sulphides throughout.	WA49345				+				-	
Sample taken at outcrop near chip sample.	WA49346									
Massive quartz carbonate. Rusted in places, trace sulphide	WA49347									
massive quartz carbonate. Nusted in praces, trace sulprinde	WA49348									
trace sulphide throughout	WA49349									
trace suprime triougnout	WA49350									
3-4% sulphide throughout	WA49351									
3-476 sulpride infoughout 1% sulphide	WA49351 WA49352									
Trace of very finely disseminated sulphides	WA49352 WA49354									
Trace or very interly dissertificated sulprinces	WA49356									$\overline{}$
	WA49357									
	VVA43001									

ME-XRF06	ME-XRF06	ME-XRF0	ME-XRF06	ME-XRF06	ME-XRF0	ME-XRF0	ME-XRF0	ME-XRF0	ME-XRF0	ME-XRF0	ME-XRF05	PGM-I	CP2PG	M-ICP2	PGM-ICP2	Co-AA61	Cu-AA61	Cu-AA62	Ni-AA61	Ni-AA62	V-AA61	S-IR08
	P2O5	SrO	BaO	LOI	Total	Ва	Nb	Rb	Sr	Υ	Zr	Au	Pt		Pd	Co	Cu	Cu	Ni	Ni	V	S
%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppk)	ppb	ppm	ppm	%	ppm	%	ppm	%
								1					82 <5		<1	1005			>10000	2.17		13.2
0.13	0.12	0.01	0.01	3.2	99.69	130) 2) 4	53	20	63	<i>-</i> 1	<5		1	22	40		30	2.17	156	
0.13	0.12	0.01	0.01	0.2	33.03	130	4		- 55	20	00	` '	47 <5		<1	407	4350		2680		180	
-						-		+							<1					4.00		
													34 <5			355	384		>10000	1.29		
													25 <5		<1		>10000	1.16			167	
0.15	0.14	0.02	0.01	0.87	99.85	100) 4	13	185	33	105		<5		<1	48			142		304	
												,	136 <5		2	866	>10000	1.77	1685		105	13.
													15 <5		3	358	1020		2880		149	4.3
													58 <5		1	422	>10000	1.71	5440		184	7.7
0.18	0.02	<0.01	<0.01	14.1	100	<10	<2	<2	<2	<2	7	<1		21	40				2370		57	
0.14	0.08					900		36		11			<5		<1	41			67		318	
0.15		<0.01	<0.01	13.55			<2	2		2			4	25					2400		37	
	0.05		<0.01										4									
0.08				4.64		50		3 2					<5		<1	32			137			<0.01
0.24		<0.01	<0.01	4.38		40		2 3		5	15		5	37			259		1905		99	
0.18		<0.01	<0.01	13.8) <2		<2	2	7		9	48					2620		44	
0.18	<0.01	<0.01	<0.01	13.95			<2	2	<2	<2	6	<1	<5		6				1700		35	
0.18	0.01	<0.01	<0.01	14.15	99.97	10	<2	2	2	<2	6		4	25	30	142	36	L	2450		38	0.0
0.21	0.18	0.01	0.01	3.57	99.58	50) 2	21	70	14	69	<1	<5		5	37	74		151		235	<0.01
0.17	0.01	<0.01	<0.01	13.95	100	10) 2	2 <2	<2	<2	6	<1		28	61	135	40		2290		35	
0.17		<0.01	<0.01	13.35) <2	3			11			51					2050		50	
0.17	0.02	.0.01	.0.01	10.00	55.50		-	 	<u> </u>		- ''	· ·	6 <5		<1	18		 	31	1	110	
0.19	0.00	<0.01	∠0.01	13.65	00.0	-10	-2	2	<2	-2	8		5	17			68	 	2330		54	
			<0.01			<10	<2			<2			4									
0.19		<0.01	<0.01	13.7	99.63		<2		<2	<2	6		1	19					2230		42	
0.19		<0.01	<0.01	14.2		_	<2	<2	<2	<2		<1		6					2200		34	
0.15		<0.01	<0.01	19.8		20		2 3			8	<1		17			5		2060			<0.01
0.17	0.01	0.02	<0.01	21.4	100.1	20) 2	2 3	135	<2	9	<1		33	10	109	5		1920		39	< 0.01
0.15	0.01	< 0.01	<0.01	17.75	99.76	10) <2	3	31	2	9	<1		29	10	116	5		2150		44	< 0.01
0.16	0.02	<0.01	<0.01	20.5	99.91	30) 2	2 3	25	2	11	<1		25	12	116	5		2040		41	0.0
0.19	0.05	0.01	0.02			150		11		7	29		20	172			790		2630		129	
0.18	0.07	0.01				180		3 11		10			59	227	457	163			3560		156	
0.16	0.07	0.01	0.02	4.32	100.03	100	, .	11	100	10	39											
													36	150	394	180	1810		4370		122	
													41	190	447	173			4250		115	
0.18		<0.01	<0.01	14.65		<10	<2	2	<2	2	8	<1		8			27		2260		40	
0.2	0.01	<0.01	<0.01	13.8	99.97	10) <2	3	2	<2	7		1	11	16	123	19		2130		45	0.0
													14	95	51	129	2420		1020		116	0.0
													24	710	412	399	8730		8310		107	0.5
0.15	0.07	<0.01	0.01	15.55	98.21	50) 5	5 5	35	9	43		130	567	288	186	3380		2170		131	
00	0.07	40.0.	0.0.	10.00	00.21		1	<u> </u>		,			162	498		217			2510		139	
0.14	0.4	0.04	0.24	4.8	100.05	2340	1 7	157	287	18	71		<5	100	2	34	55		31		235	
0.14	0.4	0.04	0.24	4.0	100.03	2340	, ,	137	201	10	/ 1			000								
													136	602	333				2030		109	
 						ļ		<u> </u>					50	152					1565		79	
ļļ			1		<u> </u>			1			1		57	836			>10000		>10000	1.87		
0.18		<0.01	<0.01	12.35		20		2 4	4	3	13		2	31			118		1565		67	
0.23	0.02	<0.01	<0.01	11.9	99.78	20	<2	2	3	3	14	<1		36	56	109	86	L	2020		67	0.1
0.16	0.01	<0.01	<0.01	14.6	99.56	<10	- 2	2 2	<2	<2	7	<1		10	21	128	6		2440		35	0.0
0.19	0.02	0.01	0.01	15.85		70) 2	2 2		<2	7	<1		6			187		1645		48	
0.09	0.1	0.01				300		11					<5		<1	16			48		161	
0.18		<0.01	<0.01	14.8) <2	2		<2	6		1	57			17		2300		38	
0.18		<0.01	<0.01	14.85) <2	2		<2	6		3	21		144	28		2310	1	49	
						10							1						1830			
0.19		<0.01	<0.01	13.15				2 2	4		11		10	25			67				50	
	<0.01	<0.01	<0.01	14.75			<2	<2	<2	<2	5		12	55		130	66		1805		51	
0.2	0.13					NSS	NSS	NSS	NSS	NSS	NSS		27	77					2310		35	
0.17	0.05	<0.01	<0.01	11.05		30		3 4	15	6			4	52					2730		369	
0.12	0.04	<0.01	0.01	5.26	100.05	20) 3	3	11	8	30		2	462	1025	107	141		2000		110	1.3
0.18	0.03	<0.01	<0.01	13.75	99.2	<10	<2	2	4	<2	9		6	47	75	202	2570		3790		145	0
0.2		<0.01	0.01			70							7	14					2320		51	
0.19		<0.01	<0.01	13.5		10					12		4	36					1755		87	
0.13		<0.01	0.01			100							1	15					2210		58	
Λ 2													1									
0.2	0.03	<0.01	<0.01	8.66									3	6					1890		84	
0.21			0.01	10.25	99.87	20	01 3	5	6	6	23	I<1	1	13	32	125	72	l	1105	l	109	0.0
0.21	0.05																					
0.21 0.2 0.21	0.05 0.11	0.01	0.02	1.34	99.83	200) 2	2 24	129		56		3	9					99		337	
0.21	0.05 0.11 0.3	0.01 0.04	0.02	1.34	99.83	200) 2	2 24	129	23 20	56		3 <5			50 16			99 6		337	<0.01
0.21 0.2 0.21	0.05 0.11 0.3	0.01	0.02	1.34	99.83 99.77	200) 2	2 24 51	129 251	20	56 91	<1	3 <5		18 <1	16	20				337	<0.01

0.23		<0.01	<0.01	10.7	99.88	60		6		6	6	36	3	7	33	131	332		1295		71	0.11
0.2	0.12	<0.01	0.01	25	99.99	50		6	67	26	6	69	1 <5		7	42	108		75		324	<0.01
0.23		<0.01	< 0.01	6.13	99.65	50	<2	4	26	67		14	4	26	47	141	292		1925		92	0.12
0.15	0.01	<0.01	<0.01	16.9	99.54		<2	2	18	2	2	10 <	:1	47	57	125	26		2150		40	0.01
0.18		<0.01	< 0.01	13.1	99.79		2	3	2	2	2	10	1	24	44	124	51		2190		60	0.06
0.2	0.11	0.02		3.24	99.43		NSS	NSS	NSS	NSS	NSS		45	49	203	90	794		2400		332	0.7
0.2	0.11			3.24	99.43		NSS	NSS	NSS	NSS	NSS		45	49	203	90	794		2400		332	0.7
0.2	0.16			2.24	99.78	390		36		17		51	1	11	11	43	149		91		297	0.01
0.16	0.09	0.02	0.03	1.95	99.88	280	4	20	180	18	3	61	2 <5		11	36	110		63		254	0.05
													1	6	65	260	601		1965		49	13.15
0.22		<0.01	<0.01	8.68	99.4	40						23	3	11	38	130	141		1125		109	0.07
0.19		<0.01	<0.01	9.66	99.59	20						16	7	18	45	147	826		1660		89	0.38
0.18	0.15			6.75	99.93	150			65		1	63 <			6	63	43	266	359	0.14		
0.18		<0.01	<0.01	13.4	99.41		<2	2		<2	ļ	6	1 <5		3	136	47	2370	39	0.04		
0.16		<0.01	<0.01	13.15	99.76		<2	2		<2		7	2	27	72	127	30	2140	35	0.03		
0.15		<0.01	<0.01	13.35	99.46		<2	2		<2		7	1	28	120	124	8	2100	35	0.01		
0.15		<0.01	<0.01	13.55	99.83		<2		<2	<2		6 <		10	5	128	40	2150	28	0.03		
0.16		<0.01	<0.01	10.75	99.59	40			8			18	28	205	448	147	308	3950	78	0.42		
0.22	0.13	0.01		3.24	99.66		NSS	NSS	NSS	NSS	NSS		8	59	208	90	766	2410	322	0.66		
0.21	0.12	0.01	<0.01	3.25	99.67	NSS	NSS	NSS	NSS	NSS	NSS		9	75	231	87	777	2360	329	0.65		
													115	474	999	168	2600		4590		131	0.91
													77	373	816	160	1745		4200		127	0.72
												<	:1	10	6	131	270		1115		101	0.28
												_	49	438	1675	270	4500		9290		139	0.69
													45	323	541	116	1245		2640		190	1.14
													21	134	246 1105	87	399		1640		198	0.66
													17	179		137	2700		3700		148	1.4
													46	741 296	1585 792	209 145	3020 1945		6280 4230		181 196	1.32 0.78
													23	287	639		1345		2140		213	0.78
													58 58	287	534	92 122	823		2780		189	
-											1		116	422	3390	557	6550		>10000	1.9	84	0.14 8.4
-											1		75	340	840	156	3110		3520	1.9	215	1.49
-							1				1		52	299	664	71	1130		1440	1	204	0.74
													17	458	599	125	911		2840		199	1.32
													11	87	195	97	437		1745		187	0.56
													97	1150	1050	137	2590		4200		120	1.1
-			1								+		3	48	29	92	105		1295		193	0.16
											+		8	46	11	117	54		1985		77	0.10
-											+		86 <5	40	2	227	9600		25		7	36.8
											1	-+	323	720	4380		10000	2.73	9160	i	140	6.98
											1		39	172	568	202	8260	2.73	4460	1	181	3.91
											1	-+	33	112	500	202	0200		7700	i	101	0.01
											1		49	162	751	228	3490		6070		108	5.29
							1	İ			1		109	21 -		24	1755		40		12	46.1

Appendix 4: POLE Project area Sample Descriptions and Results

Appendix 4a: Rock sample descriptions, results Appendix 4b: Soil sample descriptions, results Appendix 4c: Silt sample descriptions, results

All-Terrane Mineral Exploration Services

SILT SAMPLE DESCRIPTION SHEET (Appendix 4c)

"POLE" Grid/ CANALASK, Xstrata plc (formerly Falconbridge Ltd.) July - August, 2006

Sample No.	Easting	Northing	Zone	% Fines	Colour	Stream	Stream	Date	Sampler	Comments
	NAD 83	NAD 83				Grade	Width			
TC276294	527218	6867030	7	55	gry-brn	Mod	1	5/8/2006	CS	Mossmat; several sites
TC276295	527226	6867922	7	90	dk brown	Gentle	0.5	2/8/2006	CS	Boggy stream, high organics
TC276296	526789	6867459	7	40	gry-brn	Mod	1.5 m	2/8/2006	CS	Rare silt; mostly mossmat
TC276297	526886	6867366	7	45	gry-brn	Mod	1.5 m	1/8/2006	CS	Rare silt; mostly mossmat
TC276298	526740	6867725	7	70	brown	Gentle	3.5 m	1/8/2006	CS	Mossmat, minor fine silts
TC276299	526622		-	75	brown	Mod	4 m	1/8/2006	CS	Fairlyabundant silt; incl mossmat
TC276300	526531	6867935	7	80	brown	Gentle	3 m (bed)	1/8/2006	CS	Active, abundant silt

	PGM-ICP23	PGM-ICP23	PGM-ICP23	S-IR08	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
SAMPLE	Au	Pt	Pd	S	Ag	Al	As	Ba	Ве	Bi	Ca	Cd	Co
DESCRIPTION	ppm	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
TC276294	0.054	0.014	0.02	0.22	< 0.5	7.01	28	360	0.7	<2	2.48	< 0.5	40
TC276295	0.008	< 0.005	0.002	0.4	< 0.5	6.36	10	450	0.9	<2	3.07	< 0.5	18
TC276296	0.005	< 0.005	0.013	0.27	< 0.5	7.64	6	500	0.9	<2	3.59	< 0.5	27
TC276297	0.003	0.006	0.023	0.25	< 0.5	6.62	20	380	0.7	<2	2.61	< 0.5	38
TC276298	0.005	0.007	0.011	0.21	< 0.5	6.91	17	400	0.7	<2	2.71	< 0.5	33
TC276299	0.011	< 0.005	0.01	0.24	< 0.5	6.88	11	420	0.8	<2	3.29	< 0.5	30
TC276300	0.002	< 0.005	0.003	0.11	< 0.5	7.79	<5	570	0.9	<2	3.37	< 0.5	17

ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sr	Ti	V	W	Zn
ppm	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
1480	67	7.05	1.07	4.05	871	1	1.39	360	590	11	0.07	<5	259	0.49	167	<10	102
105	78	3.98	1.02	1.32	1100	1	1.57	38	860	10	0.15	<5	523	0.42	117	<10	103
608	56	5.54	1.08	2.7	1065	1	2.16	135	720	8	0.07	<5	355	0.63	177	<10	105
1200	64	6.07	0.97	3.98	920	1	1.49	352	580	11	0.06	<5	269	0.47	151	<10	98
833	57	5.57	1.04	3.64	958	1	1.67	272	610	11	0.05	<5	296	0.5	154	<10	95
586	63	5.17	1.09			1	1.81	231	660		0.08	<5	318	0.51	157	<10	91
240	32	4.17	1.18	2.33	813	<1	2.44	66	720	7	0.03	<5	368	0.57	165	<10	83

Appendix 5: PIC Project area Sample Descriptions and Results

Appendix 5a: Rock sample descriptions, results
Appendix 5b: Silt sample descriptions, results
Appendix 5c: Whole Rock sample descriptions, results

WHOLE ROCK SAMPLE DESCRIPTION SHEET (Appendix 5c)

(Complete ICP)
"PIC" Block, Xstrata plc (formerly Falconbridge Ltd.)
July, August, 2006

Sample No.	Easting (UTM)	Northing (UTM)	Zone	Sample	Width	Sample	Formation	Lithology	Modifier	Colour	Carb	Silicification	Alteration	Alteration	Other	Mineral	Amount	Mineral	Amount	Other	Amount	Date	Sampler	Comments
	NAD 83	NAD 83		Type	(m)	Descriptio	n				Presence		1	2		1	(%)	2	(%)	Mineral	(%)			
RC276233	535936	6859059		7 CGr		Rcrop	mTwr	Pyroxenite	Wk shear	grn-blk	C1					Po?	3	Py	<1	Mag	strong	18/8/06	CS	Small pod; dissem sulphides
RC276234	535991	6859145		7 CGr		Talus	mTwr	Gabbro?	shear	green	C2		Serp 1	Chl2		Ру	tr					18/8/06	CS	Fairly abundant talus
RC276235	536250	6859466		7 CGr		Ocrop	mTwr	Peridotite	Wk shear	grn-blk						Po	3			Mag	mod-st	18/8/06	CS	Locally banded pyrrhotite
RC276236	536250	6859468		7 CGr		Ocrop	mTwr	Peridotite	Massive	grn-blk						Po	5			Mag	strong	18/8/06	CS	Fine fractrure-controlled pyrrhotite
RC276237	536257	6859490		7 CGr		Ocrop	mTwr	Peridotite	Massive	black						Po	1	Py	tr	Mag	strong	18/8/06	CS	Small dykes in diorite - gabbro
RC276238	535600	6860060		7 CGr		Ocrop	mTwr	Pyroxenite	Massive	grn-blk			Serp 1							Mag	strong	18/8/06	CS	Local banded mag - serpentinite alt
RC276239	535585	6860055		7 CGr		Rcrop	mTwr	Pyroxenite	Med grain	grn-blk	C1		Serp 1							Mag	weak	18/8/06	CS	Minor serpentinite veining
RC276770	536137	6858528	7	W/R		O/C																21/8/06	BR	Intrusive, 1% Py, magnetic
RC276771	536252	6858568	7	W/R		O/C		Umafic				Serp										21/8/06	BR	Ultramafic, serpentine
RC276772	536550	6858394	7	W/R		Float		Umafic				Serp										21/8/06	BR	Ultramafic, serpentine
RC276774	536911	6858710	7	W/R		O/C		Umafic				Serp						Mag				21/8/06	BR	Ultramafic, serpentine, magnetic
RC276775	536911	6858710	7	W/R		O/C		Umafic				Serp						Mag				21/8/06	BR	Ultramafic, serpentine, magnetic
RC276776	536518	6858404	7	W/R		Float		Umafic										Mag				22/8/06	BR	Ultramafic
RC276777	535043	6859370	7	W/R		O/C		Basalt										Mag				22/8/06	BR	Basalt, magnetic
RC276778	535059	6859374	7	W/R		O/C		Basalt														22/8/06	BR	Basalt, magnetic
276805			7	W/R		Ocrop																		
276806			7	W/R		Ocrop																		
276807			7	W/R		Ocrop																		

	ME-N	IS81 I	ME-MS81	ME-MS81	ME-MS81	ME-N	MS81 M	ME-MS81	ME-MS8	1 ME-MS	ME-MS	1 ME-MS8	1 ME-MS81	ME-MS	81 ME-M	S81 ME-	-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS8	1 ME-M	S81 ME-MS	81 ME-M	S81 ME	-MS81 M	IE-MS81	ME-MS81	ME-MS8	1 ME-MS	31 ME-M	S81 ME-M	S81 ME-MS8	81 ME-MS81
SAMPLE	Ag		За	Ce	Co	Cr	C	s	Cu	Dy	Er	Eu	Ga	Gd	Hf	Но		La	Lu	Мо	Nb	Nd	Ni	Pb	Pr	Rb	Si	m	Sn	Sr	Та	Tb	Th	TI	Tm
DESCRIPTION	N ppm		opm	ppm	ppm	ppm	pp	pm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	n j	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn	n pr	pm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
																														↓					
RC276233	<1		117.5	6.1	145.5		4100	1.9	39	0.				0	.93	0.8	0.21	2.6		′ <2	2.1		2 2	120		0.78	2.3	0.9	1	53				0.37 < 0.5	0.09
RC276234	<1		675	5.2	54.3	3	650	1.09	8	35 2.	25 1.	66 0.4	6 14.5	1	.65	1	0.52	2.3	0.25	<2	0.8	3.	.3	225		0.73	52.1	1.12	1	36	.6	0.1	0.33	0.52 0	0.6
RC276235	<1		13.2	1.2	130) (4580	0.13	54	17 0.	27 0.	17 0.0	7 3.9	0	.28	0.4	0.06	0.5	0.03	3 <2	0.4	0.	.7 2	900	8 (0.16	1.6	0.23	<1		2 (0.2	0.04	0.1 < 0.5	0.03
RC276236	<1		7.1	1	154.5	5 (6060	0.16	43	33 0.	31 0.	9 0.0	7 6.9	0	.27	0.4	0.07	<0.5	0.04	<2	0.4	0.	6 2	330	9 (0.12	1.4	0.21	<1	1	.6	0.1	0.05	0.11 < 0.5	0.04
RC276237	<1		12.9	2.4	157.5	5 .	4830	0.09	3	37 0.	56 0.3	0.0	7 3.2	2 0	.49	0.6	0.12	0.9	0.04	<2	0.9	1.	5 2	040	5 (0.33	1.9	0.41	<1	1	.5	J.2	0.09	0.14 < 0.5	0.05
RC276238	<1		23.9	2.2	2 117	7	1920	1.7	4	10 0.	68 0.4	14 0.2	4 7.5	0	.63	0.5	0.15	0.9	0.06	<2	0.7	1.	4 1	010 <5		0.3	4.8	0.45	<1	24	.2	0.1	0.11	0.16	0.06
RC276239		1	19.5	2.2	97.	1	1700	2.04	2	22 0.	72 0.3	39 0	2 6.8	0	.56	0.6	0.15		0.06	S <2	0.5	1.	4	865 <5	(0.32	2.9	0.45	1	19	.1	0.1	0.11	0.16 < 0.5	0.06
27	6770 <1		350	25	38.6	6	10	0.39	9	94 4.	09 2.	1.3	9 16.9	4	.43	1.5	0.88	10.2	0.35	<2	2.5	16.	8	13 <5	- ;	3.64	30.9	4.32	1	48	35 (J.1	0.71	0.96 < 0.5	0.37
27	5771 <1		387	26.2	37.6	6	10	0.46	9	99 4.	21 2.4	1.3	2 18.8	3 4	.62	1.6	0.87	10.9	0.37	<2	2.5	17.	5	12 <5	- ;	3.72	50.9	4.4	1	5′	12 (J.2	0.73	1 < 0.5	0.38
270	6772 <1		736	35.5	36.6	3	50	1.04	11	6	4 2.4	1.4	8 19.4	4	.85	2.1	0.83	15.6	0.33	3 <2	3.9	19.	9	23	14 4	1.61	72.6	4.93	1	52	28 (J.2	0.72	2.54 < 0.5	0.34
27	6774 <1		29	4.6	156.5	5 (6460	0.35	13	36 0.	36 0.4	16 0.2	7 5.5	5	0.7	0.7	0.15	1.9	0.05	<2	1.5	2	.6 1	560 <5	(0.58	3.4	0.64	1	17	.3	0.1	0.12	0.29 < 0.5	0.06
27	6775 <1		23.3	5.7	155.5	5 .	4930	0.13	20		97 0.:	51 0	2 4.4	1	.02	0.7	0.19	2.3	30.08	3 <2	1.9	3.	8 1	550 <5	().73	3.1	0.81	1	10	.4 (0.1	0.15	0.35 < 0.5	0.06
270	6776 <1		459	26.9	50.5	5	150	3.36	8	39 4.	12 2.4	1.5	5 19.3	3	4.7	1.8	0.83	11.4	1 0.37	<2	3.1	18.	3	63 <5	- ;	3.82	106.5	4.47	1	39	<i>3</i> 5 (J.2	0.79	1.43 < 0.5	0.35
270	6777 <1		170	29.6	42.2	2	40	0.86	5	53 4.	11 2.4	1.3	6 16.9	9 4	.74	1.6	0.85	12.3	3 0.34	<2	3.5	18.	4	36 <5	4	1.17	20.3	4.67	1	50	7 (J.2	0.68	1.65 < 0.5	0.34
27	6778 <1		367	24	43.4	4	30	1.2	8	3.	95 2.3	39 1.2	9 16.5	5 4	.36	1.7	0.81	10	0.35	<2	2.8	16	4	20 <5	;	3.49	37.7	4.18	1	57	/9 ().2	0.69	1.24 < 0.5	0.32
27	805 <1		8.8	5.3	118	8	5510	0.44	17	'3 1.	19 0.	78 0.0	5 6.2	2 1	.25	0.8	0.27	2.5	0.09	9 <2	1.4	3.	3 1	590	5 ().73	1.4	0.93	1	9	0.9).1 (0.19	0.31 < 0.5	0.09
27	806 <1		617	14.9	47.7	7	200	0.39	18	33 4	.4 2.	55 1.1	3 20.9)	3.6	2	0.85	6.5	0.29	<2	4.5	9.	7	70 <5		2.04	9.9	2.8	1	50	J5 (0.3 (0.64	1.09 < 0.5	0.33
270	807 <1		3020	6.6	5′	1	240	0.19	4	3 2.	69 1	.9 0.5	2 14.6	5 1	.76	0.9	0.59	3.2	2 0.3	<2	1.1	4.	2	122	5 (0.88	1.5	1.38	1	72	20 (J.1	0.35	0.53 < 0.5	0.29

ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	PGM-ICP23	PGM-ICP23	PGM-ICP23	S-IR08
U	V	W	Υ	Yb	Zn	Zr	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5	SrO	BaO	LOI	Total	Au	Pt	Pd	S
ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	%
0.15		5	5.6	0.47	88		35.39		14.33		32.02	0.16		0.57					<0.01	11.75	99.75	0.004	0.05	0.083	
0.23		1	14.3		72	2		15.26	10	5.42	11.81	1.81		0.08					0.06	4.78			<0.005	0.01	
0.05		12	1.7	0.22	93		4 34.44	1.6	16.43			0.2		0.65				<0.01	0.01	11.4	99.15		0.037	0.043	
0.06		2	2	0.22	106		3 35.86	1.48	12.45		36.31	0.18		0.75					<0.01	12.15	99.66				
0.09		5	3.2	0.27	79	2	34.19	1.67	13.2		36.39	0.1		0.66					<0.01	12.4					
0.08		3	3.9		79	14	4 38.52	6.82	14.46	5.65		0.2		0.27					<0.01	7.82			0.017		
0.09		3	4	0.39	67	1:	9 40.51	7.6	12.15	7.84	24.1	0.36		0.24				<0.01	<0.01	6.71	99.99		0.012	0.014	0.02
0.4		14	21.7	2.42			9 46.17	19.02	12.05	5.55		4.27		<0.01	1.16					4.36			<0.005	<0.001	0.01
0.34		6	21.1	2.31	107	5.	2 45.54	20.18	12.06	4.11		3.86		<0.01	1.21			0.06		4.95			<0.005	<0.001	0.01
0.89		6	20.6	2.02		7	3 48.49	19.95	10.46	5.26		3.4		<0.01	0.97					3.06			<0.005	0.001	
0.17		0	3.9	0.49	93		35.89 35.29	3.54 2.18	15.56 15		30.26	0.31 0.33		0.69 0.53				<0.01 <0.01	<0.01 <0.01	10.25 11.1	99.3 99.19	0.001	0.023 0.032		
0.13			22.5			- Z	3 45.09	17.52	13.07	7.21		1.36		0.03					0.05	3.71			< 0.005	0.002	
0.42		1	20.7			6	0 47.71	18.7	10.92	5.67		4.75		<0.01	1.22	0.23		0.04		4.24			<0.005	<0.002	0.01
0.83		2	20.7		104	5	7 49.86	18.41	11.37	4.24		4.79		0.04	1.1					3.02			<0.005	<0.001	0.01
0.15		12	6.2	0.59	80	3:		3.93	13.08	0.47		0.26		0.62				<0.01	<0.03	7.34	99.85	0.001	0.018	0.027	1.61
0.15		3	22.5		92		5 48.31	15.46	11.64	6.53		3.89		0.02					0.06	3.44	99.48		<0.005	0.006	
0.23		6	15.2	1.88	82		4 46.26	15.63	11.34	13.13		2.33		0.03								<0.001	0.005	0.018	

Appendix 6:

Miles Ridge Interpretation Summary,

Lamontagne Geophysics Ltd.

October 5, 2006

EBA File: 1240240

Xstrata Plc. 3296 Francis Hughes Ave Laval, Quebec

Attention:

Mr. Richard Nieminen, P.Geo.

Subject:

Addendum to Spill Restoration Summary Report Beaver Creek Aerodrome, Beaver Creek, Yukon

1.0 INTRODUCTION

EBA Engineering Consultants Ltd. (EBA) is pleased to submit this letter report detailing additional sampling with regards to restoration activities at the Beaver Creek Aerodrome in Yukon (the subject property or Site). EBA was retained by Mr. Richard Nieminen of the Falconbridge Ltd. to provide environmental consulting services with regards to the fuel spill at the Site. Mr. Kirn Dhillon, P.Eng, conducted the initial spill response. Sample results indicated that hydrocarbon concentrations in soil removed as part of a remedial excavation were actually below the applicable Yukon Contaminated Sites Regulation (CSR) Commercial Land Use numerical standards. The stockpile of suspected contaminated soil was subsequently re-sampled and analyzed. This letter report documents the results of resampling and makes appropriate recommendations. It is an addendum to the September 21, 2006 report, and is not meant to be a stand-alone report

2.0 SUMMARY OF ADDITIONAL FIELDWORK

On September 17, EBA collected two additional samples from the stockpile of suspected contaminated soil in a manner exceeding Protocol 3 of the CSR. The estimated volume of the stockpile was in the order of 50 m³. One representative samples for each half of the pile was collected. One sample represented 25 m³ of soil. Each sample was formed by combining five different sub-samples from a given half. The sub-samples represented 5m³. In addition to the two additional samples collected, EBA has the result from an *in situ* sample that was collected as part of the initial soil remediation.

1240240R03_Beaver_Creek_Spill_Report_Addendum.dog

3.0 **RESULTS**

Laboratory results are attached in Appendix A. The results of the two additional samples, and the initial in situ sample are summarized as follows:

Parameter	1240240-H (22/07/2006)	1240240-Stockpile 1 (17/09/2006)	1240240-Stockpile 2 (17/09/2006)	Y-CSR Commercial Standards
% Moisture	8.9	13	11	
LEPHs	1300	-	-	2000
EHs10-19	1300	590	78	2000
HEPHs	<5	-	-	5000
EHs19-32	<5	7	<5	5000
Acenaphthene	<0.01	-	-	NS
Acenaphthylene	<0.01		-	NS
Anthracene	<0,01	-	- ,	NS
Benz(a)anthracene	<0.01	-	-	10
Benzo(a)pyrene*	<0.01	-	-	10
Benzo(b)fluoranthene	<0.01	-	-	10
Benzo(g,h,i)perylenc	<0.01	-	+	NS
Benzo(k)fluoranthene	<0.01		-	10
Chrysene	<0.01	-	-	NS
Dibenz(a,h)anthracene	<0.01		-	10
Fluoranthene	<0.01	-	-	NS
Fluorene	<0.01	-	-	NS
Indeno(1,2,3-c,d)pyrene	< 0.01	-	-	10
2-Methylnaphthalene	0,21	-	-	NS
Naphthalene	0.05	-	-	50
Phenanthrene	<0.01	-	-	50
Pyrene	<0.01	-	-	100
Benzene*	<0.02	-	-	150
Toluene*	< 0.02		-	25
Ethylbenzene*	<0.02	-	-	20
Xylenes (total)*	0.15	-	-	50
Styrene	< 0.01	-		50
VHs6-10	36	-		200
VPHs	35	-		200

* - The most stringent of "Intake of contaminated soil" and "Toxicity to soil invertebrate and plants" site specific factors from Schedule 2 of the CSR was chosen Notes:

All units are in ug/g unless otherwise stated NS – no standard for this parameter is currently available in the CSR

4.0 CONCLUSIONS & RECOMMENDATIONS

The results indicate that hydrocarbon concentrations are below CSR Commercial Land Use numerical standards and the soil is not considered contaminated under the CSR. These concentrations would decline further if the soil was thinly spread over the ground surface. It is recommended that the stockpile be disposed of by spreading on a property with commercial or industrial land use designation.

5.0 LIMITATIONS OF LIABILITY

This report has been prepared for the exclusive use of Xstrata Plc. for the specific application described in Section 1.0 of this report. It has been prepared in accordance with generally accepted geo-environmental engineering practices. No other warranty is made, either expressed or implied. Engineering judgement has been applied in developing the recommendations of this report.

For further limitations, reference should be made to the attached Environmental Report-General Conditions, which form a part of this report.

With respect to regulatory compliance issues, please note that regulatory statutes and the interpretation of regulatory statutes are subject to change over time. Moreover, this report is not meant to represent a legal opinion regarding compliance with applicable laws.

6.0 CLOSURE

We trust this report meets your present requirements. Should you have any questions or comments, please contact the undersigned at your convenience.

Sincerely,

EBA Engineering Consultants Ltd.

Kirn S. Dhillon, B.A.Sc., P.Eng. Project Environmental Engineer

Direct Line: (867) 668-2071, ext. 25

e-mail: kdhillon@eba.ca

KSD/djw/bep

reviewed by:

Bengt Pettersson, B.Sc., M.A.

Team Leader, Environmental Services

THE

Direct Line: (867) 668-2071 ext. 35

e-mail: bpetterson@eba.ca

ENVIRONMENTAL REPORT - GENERAL CONDITIONS

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site or proposed development would necessitate a supplementary investigation and assessment.

This report and the assessments and recommendations contained in it are intended for the sole use of EBA's client. EBA does not accept any responsibility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 LIMITATIONS OF REPORT

This report is based solely on the conditions which existed on site at the time of EBA's investigation. The client, and any other parties using this report with the express written consent of the client and EBA, acknowledge that conditions affecting the environmental assessment of the site can vary with time and that the conclusions and recommendations set out in this report are time sensitive.

The client, and any other party using this report with the express written consent of the client and EBA, also acknowledge that the conclusions and recommendations set out in this report are based on limited observations and testing on the subject site and that conditions may vary across the site which, in turn, could affect the conclusions and recommendations made.

The client acknowledges that EBA is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the client.

2.1 INFORMATION PROVIDED TO EBA BY OTHERS

During the performance of the work and the preparation of this report, EBA may have relied on information provided by persons other than the client. While EBA endeavours to verify the accuracy of such information when instructed to do so by the client, EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

3.0 LIMITATION OF LIABILITY

The client recognizes that property containing contaminants and hazardous wastes creates a high risk of claims brought by third parties arising out of the presence of those materials. In consideration of these risks, and in consideration of EBA providing the services requested, the client agrees that EBA's liability to the client, with respect to any issues relating to contaminants or other hazardous wastes located on the subject site shall be limited as follows:

- With respect to any claims brought against EBA by the client arising out of the provision or failure to provide services hereunder shall be limited to the amount of fees paid by the client to EBA under this Agreement, whether the action is based on breach of contract or tort;
- 2. With respect to claims brought by third parties arising out of the presence of contaminants or hazardous wastes on the subject site, the client agrees to indemnify, defend and hold harmless EBA from and against any and all claim or claims, action or actions, demands, damages, penalties, fines, losses, costs and expenses of every nature and kind whatsoever, including solicitor-client costs, arising or alleged to arise either in whole or part out of services provided by EBA, whether the claim be brought against EBA for breach of contract or tort.

JOB SITE SAFETY

EBA is only responsible for the activities of its employees on the job site and is not responsible for the supervision of any other persons whatsoever. The presence of EBA personnel on site shall not be construed in any way to relieve the client or any other persons on site from their responsibility for job site safety.

5.0 DISCLOSURE OF INFORMATION BY CLIEN

The client agrees to fully cooperate with EBA with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The client acknowledges that in order for EBA to properly provide the service, EBA is relying upon the full disclosure and accuracy of any such information.

6.0 STANDARD OF CARE

Services performed by EBA for this report have been conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Engineering judgement has been applied in developing the conclusions and/or recommendations provided in this report. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of this report.

7.0 **EMERGENCY PROCEDURES**

The client undertakes to inform EBA of all hazardous conditions, or possible hazardous conditions which are known to it. The client recognizes that the activities of EBA may uncover previously unknown hazardous materials or conditions and that such discovery may result in the necessity to undertake emergency procedures to protect EBA employees, other persons and the environment. These procedures may involve additional costs outside of any budgets previously agreed upon. The client agrees to pay EBA for any expenses incurred as a result of such discoveries and to compensate EBA through payment of additional fees and expenses for time spent by EBA to deal with the consequences of such discoveries.

NOTIFICATION OF AUTHORITIES

The client acknowledges that in certain instances the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by EBA in its reasonably exercised discretion.

9.0 OWNERSHIP OF INSTRUMENTS OF SERVICE

The client acknowledges that all reports, plans, and data generated by EBA during the performance of the work and other documents prepared by EBA are considered its professional work product and shall remain the copyright property of EBA.

10.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), the Client agrees that only the signed and sealed hard copy versions shall be considered final and legally binding. The hard copy versions submitted by EBA shall be the original documents for record and working purposes, and, in the event of a dispute or discrepancies, the hard copy versions shall govern over the electronic versions. Furthermore, the Client agrees and waives all future right of dispute that the original hard copy signed version archived by EBA shall be deemed to be the overall original for the Project.

The Client agrees that both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. The Client warrants that EBA's instruments of professional service will be used only and exactly as submitted by EBA.

The Client recognizes and agrees that electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

APPENDIX

APPENDIX A LABORATORY REPORTS

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

PRELIMINARY RESULTS

EBA ENG CONSULTANTS LTD

ATTN: KIRN DHILLON

UNIT 6 151 INDUSTRIAL RD

WHITEHORSE YK Y1A 2V3

Reported On: 03-AUG-06 03:31 PM

Lab Work Order #:

L.415795

Date Received: 27-JUL-06

Project P.O. #:

Job Reference:

1240240

Legal Site Desc:

CofC Numbers:

230041

Other Information:

Comments:

ROY JONES General Manager

For any questions about this report please contact your Account Manager:

KAREN HUEBNER

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY, ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS, PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ETL Chemspec Analytical Ltd. Part of the ALS Laboratory Group 9936-67 Avenue, Edmonton, AB T6E 0P5

Phone: +1 780 413 5227 Fax: +1 780 437 2311 www.alsglobal.com

A Campbell Brothers Limited Company

Now part of the ALS Laboratory Group

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample Details	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L415795-1	1240240-1								
Sampled By:	KSD on 22-JUL-06	ļ	j					i 1	
Matrix:	SOIL								
	% Moisture	9.2		0.1	%		28-JUL-06	VN	R424999
EPH (C1	10-C19) & EPH (C19-C32)	9.2	1	0.1	/0		20-301-00	VIN	1424999
2111(01	EHs10-19	<5		5	ug/g	28-JUL-06	30-JUL-06	AAT	R425333
	EHs19-32	i 13		5	ug/g	28-JUL-06		AAT	R425333
Surr:	2-Bromobenzotrifluoride	82		34-164	%	28-JUL-06	30-JUL-06	AAT	R425333
Surr:	Hexatriacontane	51		37-183	%	28-JUL-06	30-JUL-06	AAT	R425333
L415795-2	1240240-2			,					
Sampled By:	KSD on 22-JUL-06							j	}
Matrix:	SOIL	: 							
	% Moisture	11		0.1	%		28-JUL-06	VN	R424999
EPH (C1	0-C19) & EPH (C19-C32)	<u> </u>	1				1		1
•	EHs10-19	<5		5	ug/g	28-JUL-06	30-JUL-06	AAT	R425333
	EHs19-32	22		5	ug/g	28-JUL-06	30-JUL - 06	AAT	R425333
Surr:	2-Bromobenzotrifluoride	89	!	34-164	%	28-JUL-06		AAT	R425333
Surr:	Hexatriacontane	64		37-183	%	28-JUL-06	30-JUL-06	AAT	R425333
L415795-3	1240240-3	1							
Sampled By:	K\$D on 22-JUL-06								
Matrix:	SOIL		ļ. 						,
	% Moisture	- 14		0.1	%		28-JUL-06	VN	R424999
EPH (C1	0-C19) & EPH (C19-C32)]]				1		
	EHs10-19	<5		5	ug/g	28-JUL-06		AAT	R425333
	EHs19-32	22	<u> </u>	5	ug/g	28-JUL-06	30-JUL-06	AAT	R425333
Surr:	2-Bromobenzotrifluoride	98		34-164	%	28-JUL-06		AAT	R425333
Surr:	Hexatriacontane	71		37-183	%	28-JUL-06	30-JUL-06	AAT	R425333
L415795-4	1240240-4			; 					
Sampled By:	KSD on 22-JUL-06								Į.
Matrix:	SOIL					1	1		!
	% Moisture	9.6		0.1	%		28-JUL-06	VN	R424999
EPH (C1	0-C19) & EPH (C19-C32)		(1					
	EHs10-19	<5	ļ	5	ug/g	28-JUL-06		AAT	R425333
D	EHs19-32	10		5	ug/g	28-JUL-06		AAT	R425333
Surr:	2-Bromobenzotrifluoride	92		34-164	%	28-JUL-06		AAT	R425333
Surr:	Hexatriacontane	51		37-183	%	28-JUL-06	30-10F-00	AAT	R425333
_415795-5	1240240-A		i				İ		
Sampled By: Matrix:	KSD on 22-JUL-06 SOIL				ı				
				ļ					
#84.4F	% Moisture	3.5		0.1	%	ļ	28-JU L- 06	VN	R424999
EPH (C1	0-C19) & EPH (C19-C32) EHs10-19	"E		E	uala	D1_ALIG OF	02-AUG-06	A A T	DAGGAA
	EHs19-32	<5 <5		5 5	ug/g ug/g		02-AUG-06	AAT AAT	R426841 R426841
Surr:	2-Bromobenzotriffuoride	87	Į į	34-164	ug/g %		02-AUG-06	AAT	R426841
Surr:	Hexatriacontane	93	1	37-183	% %	1	02-AUG-06	AAT	R426841
415795-6	1240240-H		 						
Sampled By:	KSD on 22-JUL-06								
	SOIL	!	1		ı				
Matrix:	PAHs - BC CSR Regs					ļ			

ALS LABORATORY GROUP ANALYTICAL REPORT

ample Details		3 Common and the manner of the second		1				Ву	
115795-6	1240240-H			! Ì					
ampled By;	KSD on 22-JUL-06								
atrix:	SOIL						ļ		
EPH and	PAHs - BC CSR Regs						1		
LEPHs a	and HEPHs			_			00 4110 00		
	LEPHs .	1300		5	ug/g	1	03-AUG-06 03-AUG-06		
	EHs10-19	1300		5	ug/g		03-AUG-06		
	HEPHs EHs19-32	<5 .5		5 5	ug/g		03-AUG-06		
LEBU		<5	1	5	ug/g		03-A0G-06		; {
LEPHS a Surr:	und HEPHs 2-Bromobenzotrifluoride	110		34-164	%	01-AUG-06	02-AUG-06	AAT	R42684
Surr:	Hexatriacontane	90		37-183	%		02-AUG-06	AAT	R42684
,,,,,,	Prep/Analysis Dates	30		37-100	70		02-AUG-06	AAT	R42684
PAHe - F	C CSR Regs			ĺ ĺ			027.00	7011	
I Allo	Acenaphthene	<0.01	!	0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Acenaphthylene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Anthracene	<0.01	ļ	0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Benz(a)anthracene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Benzo(a)pyrene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Benzo(b)fluoranthene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Benzo(g,h,i)perylene	<0.01	ļ	0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Benzo(k)fluoranthene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Chrysene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Dibenz(a,h)anthracene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Fluoranthene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Fluorene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	Indeno(1,2,3-c,d)pyrene	<0.01		0.01	ug/g	28-JUL-06	28-JUL-06	TMS	R42501
	2-Methylnaphthalene	0.21		0.01	ug/g	28-JUL-06		TMS	R42501
	Naphthalene	0.05		0.01	ug/g	28-JUL-06	1	TMS	R42501
	Phenanthrene	<0.01	ļ	0.01	ug/g	28-JUL-06		TMS	R42501
	Pyrene	<0.01		0.01	ug/g	28-JUL-06		TMS	R42501
Surr:	Nitrobenzene d5	0	SOL:MI	18-135	%	28-JUL-06		TMS	R42501
Burr;	2-Fluorobiphenyl	62		30-134	%	28-JUL-06		TM\$	R42501
Surr:	p-Terphenyl d14	84		47-146	%	28 - JUL-06	28-JUL-06	TMS	R42501
	BTEX - BC CSR Regs		ļ			-	[ĺ
BTEX ar	nd VPH (C6-C10)								
	Benzene	<0.02		0.02	ug/g	28-JUL-06		DCD	R42525
	Toluene	<0.02		0.02	ug/g	28-JUL-06		DCD	R42525
	Ethylbenzene	<0.02		0.02	ug/g	28-JUL-06 28-JUL-06		DCD	R42525
	Xylenes (total)	0.15		0.02	ug/g	J		DCD	R42525
	Styrene VHs6-10	<0.01	ļ 1	0.01	ug/g	28-JUL-06 28-JUL-06		DCD	R42525 R42525
	VPHs	36		0.5	ug/g	28-JUL-06		DCD	R42525
	VPRS	35		0.5	ug/g	20-JUL-06	20-301-00	DÇD	K42020
	% Moisture	8.9		0.1	%		28-JUL-06	VN	R42499
EPH (C1	0-C19) & EPH (C19-C32)		<u> </u>]					
,	EHs10-19	1300	Ì	5	ug/g		02-AUG-06	AAT	R42684
	EHs19-32	<5	RAMB	5	ug/g	1	02-AUG-06	AAT	R42684
Burr:	2-Bromobenzotrifluoride	110		34-164	%		02-AUG-06	AAT	R42684
Surr:	Hexatriacontane	90		37-183	%	01-AUG-06	02-AUG-06	AAT	R42684
	* Refer to Referenced Information for	Qualifiers (if any) and Met	hodology.						
									1

Qualifier

Reference Information

Sample Parameter Qualifier	key	listed:
----------------------------	-----	---------

Description

RAMB R	esult Adjusted For	Method Blank	-	
SOL:MI SI	urrogate recovery	outside acceptable limits due to	matrix interference	
Methods Listed (i	if applicable):		<u> </u>	
ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On)
BTX,TVH-BC-ED	Soil	BTEX and VPH (C6-C10)	EPA 5030	5030/8260 (BTEX); CSR-Anal. Meth.1 (VPH)
ETL-L/HEPH-CALC-	ED Soil	LEPHs and HEPHs		BC MELP; CSR-Analytical Method 3
ETL-LEPH/HEPH-E	D Şoil	LEPHs and HEPHs		BC MELP; CSR-Analytical Method 3
PAH-BCCSR-ED	Soil	PAHs - BC CSR Regs	EPA 3540C	EPA 3540/8270-GC/MS
PREP-MOISTURE-E	ED Soil	% Moisture		Oven dry 105C-Gravimetric
TFH-BC-ED	Sail	EPH (C10-C19) & EPH (C	:19-	BC MELP: CSR-Analytical Method 3

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

Chain of Custody numbers:

230041

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
ED	ALS LABORATORY GROUP -		

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds. The reported surrogate recovery value provides a measure of method efficiency. The Laboratory control limits are determined under column heading D.L.

mg/kg (units) - unit of concentration based on mass, parts per million. mg/L (units) - unit of concentration based on volume, parts per million.

C32)

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. UNLESS OTHERWISE STATED, SAMPLES ARE NOT CORRECTED FOR CLIENT FIELD BLANKS.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

WWW.ENVIROTEST.COM

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM CANADA TOLL FREE 1-800-668-9878

Enviro-Test		TOLL FREE 1-800-66	•	, L'M	CC)C#	230	041			Pg.	(_of	<u>_</u>
LABORATORIES			25,200		LAB WO	ORK OR	DER#	1 4	15	70	$ \overline{} $	- Therese are not the	
REPORT TO:	· · · · · · · · · · · · · · · · · · ·	REPORT DISTRIBUTION			<u></u>	·		ا سا		1 -(<u>ر</u>		
COMPANY: FRA ENGINEERI	NE CONSULTANT	EMAIL FAX		LED									
CONTACT: KIRN DHILL	LON	EMAIL 1: <u>K</u> dhill	01 000	ba co	<u> </u>	4	EGULAF	SERVIC	E (DEFAI	JLT)			1
ADDRESS: 6-151 IND	USTRIAL ROAD	EMAIL 2:	and the second section of the section of the s				RIORITY	SERVIC	E (50% SI	URCHA	(RGE)		
WHITKIFORSE, YU	KON	DIGITAL EMAIL:		-//	_	<u>l</u>	and the second second second second	THE RESERVE THE PROPERTY OF THE PERSON NAMED IN	VICE (10	AND WATER STREET	€CHAF	(GE)	
PHONE 867668 7068 FAX: 767	76674349	SELECT: pdf	digital	both			A	NALYSIS	REQUES	ST.		anterior estatuante	
GELLPHONE:	, , , , , , , , , , , , , , , , , , , ,	INDICATE BOTTLES: FI	LTEREDIPRESE	RVED (F/P) 🟲									
INVOICE TO: SAMEY IN		JOB# 12402	40		3	4		distribution of the state of th				2 2	200
COMPANY:					040			a China		777 yana			377
CONTACT:		PO/AFE:					<u> </u>			, , , ,	ا ا	₹ ₹	
ADDRESS:					1 1		3	1		turifua.		CONTAMINATED ?	1 1
		LSD:			-1 1		-	1			313	2 INOS	3
PHONE: FAX:		QUOTE#		*	171	18	ا ار	ł		1	<u> ا</u>	김 원	151
SAMPLE ID	SAMPLING LOCATION	SAMPLED BY / DATE / TIME	SAMPLING METHOD	SAMPLE TYPE			5/16				HAZARDOUS	HIGHLY O	LAB SAMPLE
	AND THE PROPERTY OF THE PROPER			The state of the s	Na december of the Control								
1240740-		KSD/304/22		SOIL	ركمنا	11	$\dashv \dashv$			11	1	N	\Box
1740,40 - 2		1		1	1						A CONTRACTOR OF THE PERSON OF		
1740140-3					1	77							
1240240-4					1	1-1	7			f	1	11	
1240240-4						++	1						1
240240 - H				- ₹/	17.	11		_		$\dagger \dagger \dagger$		劜	十一
I I I I I I I I I I I I I I I I I I I						1-1				$\dagger \dagger \dagger$		1	
					1 1	111		$\neg \vdash$	1	17	1	+	
						1				TT	<u>-</u>		
,			<u> </u>	***************************************		11	11						1
						1 1	1 1			1		Ť.	\Box
		ilları (Crima)			or change of a								,
1					issidadas, magas militaras		<u> </u>		FROZEN	MEAN	TEMP	RATUR	Œ
YUKON -CSR									COLD AMBIENT				
Failure to complete all portio							dges a	ind agr	ees with	i the	Term	s and	j
PSUITAJSISO SY.	TEST S TIME	s as specified on the	reverse of	the white r	eport co	ODY.	tur production	To No.	IPLE COI	eterritory, maked	*!	San San San A 1 San San San San San San San San San San	a c
KIRN DHILLON	パスシン うてん	16:15	XTS 18	7:49	127	Γ_L	f 190	UPC	IN RECE	RT ? N	14 206 (1881)	⊈r(A	250
RECUSONSRED BY.	1304 25/	RECEIVED	T. W.		DATEST	NAE C		breeze	·		,		77
o configuração		*			A CONTRACTOR			D. W. C. C. C. C. C. C. C. C. C. C. C. C. C.					
	S CONTRACTOR OF THE PROPERTY O		A CONTRACTOR OF THE PARTY OF TH	STREAM CONTRACTOR OF THE PROPERTY OF THE PROPE		TORREST CONTRACTOR CON	a		Z. 1997 Charles constitutions	edual Congression	gggaatel kilklulk skell	RANCES COMMON TOWNS	-accommend

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

PRELIMINARY RESULTS

EBA ENG CONSULTANTS LTD

ATTN: KIRN DHILLON

Reported On: 27-SEP-06 05:31 PM

UNIT 6 151 INDUSTRIAL RD

WHITEHORSE YK Y1A 2V3

Lab Work Order #: L435567 Date Received: 21-SEP-06

Project P.O. #:

Job Reference:

1240240

Legal Site Desc: CofC Numbers:

Other Information:

Comments:

ROY JONES General Manager, Edmonton

For any questions about this report please contact your Account Manager:

KAREN HUEBNER

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS, PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ETL Chemspec Analytical Ltd. Part of the ALS Laboratory Group 9936-67 Avenue, Edmonton, AB T6E 0P5

Phone: +1 780 413 5227 Fax: +1 780 437 2311 www.alsglobal.com A Campbell Brothers Limited Company

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample Details	s/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	Ву	Batch
L435567-6	COMPOSITE OF 1240240-SA1, SA2, SA3	SA4.SA5			 				
Sampled By:	JENNIFER on 17-SEP-06	,							
Matrix:	SOIL	į 							
	% Moisture	13		0.1	%		22-SEP-06	SDL	R445303
EPH (C1	0-C19) & EPH (C19-C32)	15	1	0.1	/		22 00, -00	ODL	11443000
(EHs10-19	590		5	ug/g	26-SEP-06		AAT	R446990
	EHs19-32	7		5	ug/g		27-SEP-06	AAT	R446990
Surr; Surr;	2-Bromobenzotrifluoride Hexatriacontane	128 118		34-164 37-183	%	26-SEP-06 26-SEP-06	27-SEP-06 27-SEP-06	AAT AAT	R446990 R446990
L435567-12	COMPOSITE OF 1240240-SA6,SA7,SA8			37-103	·	20 321 -00	21-021-00		11440300
Sampled By:	JENNIFER on 17-SEP-06	,0,0,110							
Matrix:	SOIL								
•					ļ				
	% Moisture	11		0.1	%		22-SEP-06	SDL	R445303
EPH (C1	0-C19) & EPH (C19-C32) EHs10-19	78	-	5	uala	26-SED 06	27-SEP-06	AAT	R446990
	EHs19-32	/8 <5]	5	ug/g ug/g		27-SEP-06	AAT	R446990
Surr;	2-Bromobenzotrifluoride	91		34-164	. %	26-SEP-06		AAT	R446990
Surr;	Hexatriacontane	68		37-183	%	26-SEP-06		AAT	R446990
	* Refer to Referenced Information for Qua	allifiers (if any) and Me	thodology.						
				t i					

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On)
PREP-MOISTURE-ED	Soil	% Moisture	,	Oven dry 105C-Gravimetric
TEH-8C-ED	Soil	EPH (C10-C19) & EPH (C C32)	19-	BC MELP; CSR-Analytical Method 3
700			** Laboratory Methods employed follow i generally based on nationally or internation	
Chain of Custody num	nbers:			
The last two letters of	the above	test code(s) indicate the laborator	y that performed analytical analysis for that t	est. Refer to the list below:
Laboratory Definition 0	Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
ED		ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANAC	A	

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds. The reported surrogate recovery value provides a measure of method efficiency. The Laboratory control limits are determined under column heading D.L.

mg/kg (units) - unit of concentration based on mass, parts per million. mg/L (units) - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

UNLESS OTHERWISE STATED, SAMPLES ARE NOT CORRECTED FOR CLIENT FIELD BLANKS.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Environmental Division

ALS Laboratory Group Quality Control Report

Workorder: L435567

Report Date: 27-SEP-06

Page 1 of 2

Client:

EBA ENG CONSULTANTS LTD

UNIT 6 151 INDUSTRIAL RD

WHITEHORSE YK Y1A 2V3

Contact:

KIRN DHILLON

Test		Matrix	Reference	Result	Qualifler	Units	RPD	Limit	Analyzed	
PREP-MOISTURE-ED		Soil								
Batch I WG500329-1 % Moisture	R445303 DUP		L435567-6 13	14		%	6.2	15	22-SEP-06	
TEH-BC-ED		Soil								
Batch I	R446990									
WG502447-3	DUP		L435705-7							
EHs10-19			6	<5	RPD-NA	ug/g	N/A	69	27-SEP-06	
EHs19-32			<5	<5	RPD-NA	ug/g	N/A	56	27-SEP-06	
WG502447-2	LCS									
EHs10-19				79		%		55-145	27-SEP-06	
EHs19-32				79		%		55-145	27-SEP-06	
WG502447-1	МВ									
EHs10-19				<5		ug /g		5	27-SEP-06	
EHs19-32				<5		ug/g		5	27-SEP-06	

ALS Laboratory Group Quality Control Report

Workorder: L435567

Report Date: 27-SEP-06

Page 2 of 2

Legend:

Limit	99% Confidence Interval (Laboratory Control Limits)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard

LCSD Laboratory Control Sample Duplicate

not be achievable.

Qualifier:

RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
Α	Method blank exceeds acceptance limit. Blank correction not applied, unless the qualifier "RAMB"
	(result adjusted for method blank) appears in the Analytical Report.
В	Method blank result exceeds acceptance limit, however, it is less than 5% of sample concentration.
	Blank correction not applied.
Ε.	Matrix spike recovery may fall outside the acceptance limits due to high sample background.
F	Silver recovery low, likely due to elevated chloride levels in sample.
G	Outlier - No assignable cause for nonconformity has been determined.
J	Duplicate results and limit(s) are expressed in terms of absolute difference.
K	The sample referenced above is of a non-standard matrix type; standard QC acceptance criteria may

														· · · · · · · · · · · · · · · · · · ·						- Commercial Commercia	I	l
CHAIN O	F CUSTODY / ANALYTIC	AL REQUEST F	OR	M						AN	ALY	SIS R	EQL	JEST	ED	4	<u>55</u>	<u>56</u>		PAGE	OF	-
CLIENT: E&	34 ENGINABRING COX	ISULTANTS LTD	١	_			A			12			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	or well feel from								
ADDRESS:(6-151 INDUSTRIAL	ROAD		-			43			7												
CITY: WHITEHOLS PROV.: YT CODE: YIA 2V3					ALS				2	1						Ì	***					
	CIRN DHULON SAMPLE			ALS Environmen				ntal	EH 19	1				١			an i re candidate.					
TELEPHONE:	B 67-668-3068 FAX:86	67-668-4349		_	1938 Triumph Street Vancouver, BC					NE.						İ		organis Anna de Canada		1		
PROJECT NAM	ME/NO:: 1240240			_		C	anada VSL t	tK5		8	}			The state of the s								
P.O. NO.:	QUOTE	NO.:		_		TE TOLL F	L: 604-253-4 REE: 1-800-6	1188 665-024:	3	T	1			***			ļ					
DATE SUBMITTED:	QUOTE ALS CONTACT	TKAREN HUEB	V84	,			X: 604-253-6 vw.alsenviro.c			01 XH 20												
LAB USE	<u> </u>	01.150		<u></u>				•		1,6	· · · · · · · · · · · · · · · · · · ·						AND THE PARTY AND THE PARTY.	7 77 74 74 74 74 74 74 74 74 74 74 74 74				
5.0 000	SAMPLE IDENTI	FICATION	Γ	DATE	E / TIN	1E COL	LECTED		ATRIX	+-	1					_			+	\vdash	NOTES	
			Y	М	D	1				-	4				-	-	+		+	+	110120	—
	1240240 - SA/	MRASE		09	17		- <u> </u>	MA MA	OIL	<u> </u>	- Company		-	-	-	_		+	+	-		
	1240240 - SAZ	COMPOSITE.	P	A	4	-		PM/ NM	1				/		تأسره.			-	+-	┼┤		
	1240240 - SA3			 	\vdash			MA AM	4-	1	<u> </u>	٥٨	/ -	CON	P 7		0/1/	_	+-	+		
>-	1240240 - SA4		4.°' -	4 1	-			M ^c		┼							$-\!\!\!\!+$	-	-	-		
NO NO	1240240- SAS	COMPI	24				<u> </u>	PM AM	-	-	a post post post post post post post post		 				+		+		· · ·	
		· · ·		<u> </u>	ļ			PM AM		├-			_		_		+		+			
ESD	1240240 - SAG	1	1	4	1		_ : r	PM AM		-	-	- 		11				-	4		<u> </u>	
₩ ————	1240240 - SA7/	PLRASE		u	11	ļ <u></u>	_ :	PM PM		<u> </u>	 		_			_	+	1			#1.	
	1240240-5A8			u		1.00	<u>. • F</u>	PM AM		<u></u>		01	4_	إكوا	MA	4		W	7	-		
<u> </u>	1240240-SA9		K	+	7		F	PM AM	1/-	_						_		 	_		:	
	1240240 - SA10) Remaindre	*	K	14	1,1792	:F	PM AM	Ψ	 	ļ.,		_	11				4	 		11	
		COMP2	ļ	ļ	_	- OS	_ : F	PM AM		<u> </u>	<u> </u>			-						_		
							_ <u> </u>	PM AM		—	<u> </u>						_	+	\bot		 	
		····	<u> </u>	-	_	- Total	_ • F	PM AM		<u> </u>	<u> </u>		-					4-	4		ion)	
			<u> </u>		1		<u> </u>	PM AM					_				_			<u> </u>	999 188	
					<u> </u>			PM		<u> </u>				<u> </u>				w Books I was				
TURNAROU	IND REQUIRED:	·						F	RELIQUIS	HED 8	3Y:	DAT	SRP	19,	200€	AECE	IVEO B	Y:		DATE	21-50,	_ (
ROUTINE (7 - 10 WORKING DAYS) RUSH (SPECIFY DATE):						K			\mathcal{K}	-50 THE:			:/(5 m						TIME 10:45		
SPECIAL INSTRUCTIONS (BILLING DETAILS, QC REPORTING, ETC.):								RELIQUISHE							RECEIVED BY:			į.	DATÉ			
-	_	.1					-					TIME	<u> </u>						l	TIME		
\	1 000 41	THAD ARROY										FOR	LAB	USE	ONI	LY				Δ	LS COPY	
1	Y-CSR ST								COOLE	R SE	AL IN	TACT				MPER		-				
	1							1 1	☐ YES		⊒ NO	□N	VA .			EIPT:/.		o.C ⊠_NC	,	SE	E WHITE PAPER C SOURCE VER	CO. FOI ISION 0 GL 202.04.0
l													ŧ					•			TSSP	02.04.0

SEE WHITE PAPER CO. FOR SOURCE VERSION 05 GLP TSSP02.04.03

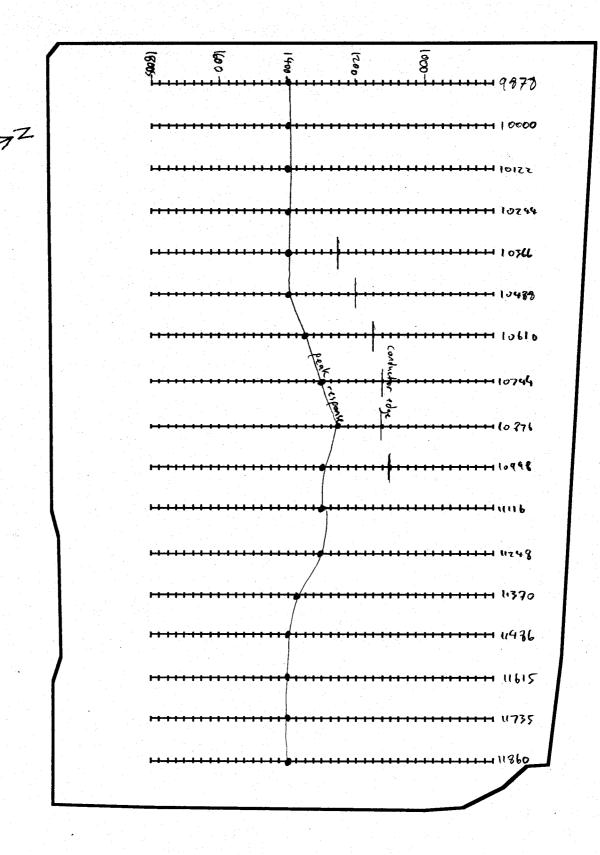


Figure 1 Canalask Grid: Loop CSK-06-01 Scale 1:13750

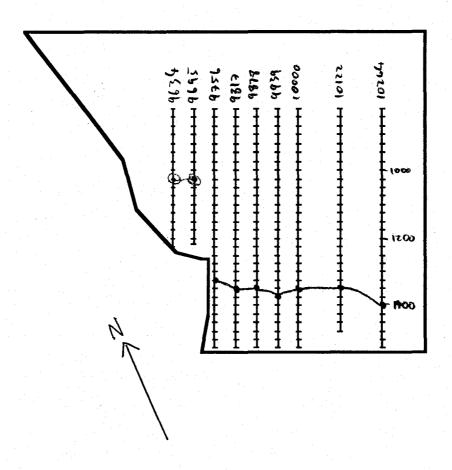


Figure 2 Canalask Grid: Loop CSK-06-01b Scale 1:13750

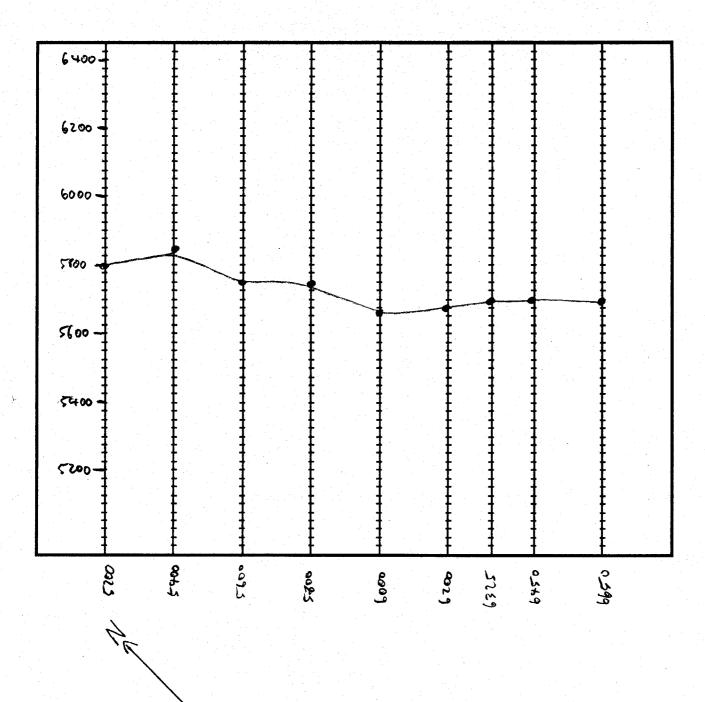


Figure 3
Pole Grid: Loop CSK-06-02
Scale 1:13750

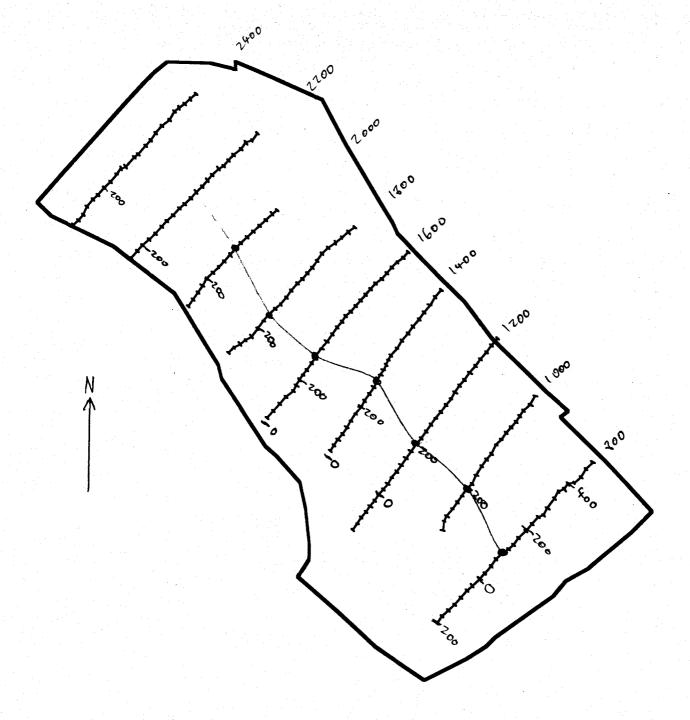


Figure 4 Onion Grid: Loop CSK-06-03 Scale 1:13750

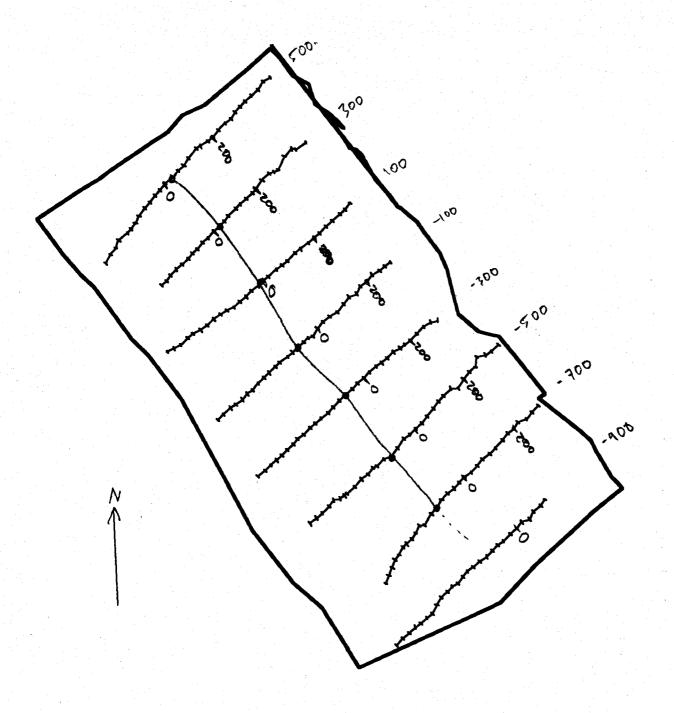


Figure 5 Onion Grid: Loop CSK-06-04 Scale 1:13750

Miles Ridge Interpretation Summary

Beaver Creek, Yukon.

This is a brief interpretation of the results of a UTEM 3 surface survey. This survey was conducted for Falconbridge Exploration Ltd. from July 14th to September 2nd, 2006 on a series of three grids, namely Canalask, Pole and Onion Grids, in the Yukon Territory. See Figure 1. Over all, the responses indicate weak conductors. They run in a southeast/northwest trend across the centre of each grid and are shallow dipping to the south

The Canalask Grid

This grid includes two loops. Loop CSK-06-01 is a large loop that encompasses lines 9878E to 11860E. A conductor is located through the centre of this grid at approximately line 1400S. It is less conductive in the eastern part of the grid than in the western part. The largest response for this conductor is found in the middle of the grid, on lines 10488E to 10998E. The amplitude then gradually decreases as one moves further west toward the White River.

The conductor trends southeast/northwest with a possible edge on the north side. The edge lies at 1250S and goes slightly north (1100S) in the middle of the grid. See Figure 1. This is a shallow dipping conductor that dips approximately 20 degrees to the south at a depth of about 300 metres.

Loop CSK-06-01b is a smaller loop in the west encompassing lines 9634E to 10244E. See Figure 2. Again, a similar response is seen here, as in the first loop. The conductor is located at approximately 1400S and becomes less conductive as it trends to the west toward the White River. There is another very weak anomaly at station 1000S on lines 9634E and 9695E that effect the early channels but is otherwise too weakly conductive for further comment.

The Pole Grid

To the east of the Canalask Grid lies the Pole Grid with one loop, CSK-06-02. There is a response along the centre of this grid as well. See Figure 3. This seems weakly conductive, indicated by a response in the early time channels (6-10) but leaving the mid to late time channels almost undisturbed. Again, it is flat lying with possibly a slight dip to the south and a more abrupt contact on the north edge.

The Onion Grid

The Onion Grid contains two loops. Loop CSK-06-03 is located at the top of the grid to the northwest of Loop CSK-06-04. See Figure 4 and 5. There is a conductive feature that trends southeast/northwest through the centre of both loops. It dips to the south with the edge to the north. The conductor in Loop 3 is located at 200 to 400E and disappears north of line 2000N (near the top of the property line). Loop CSK-06-04 detects a similar conductor further to the south. This conductor is located between 0 to 200W and is less conductive on lines south of 500S. These conductors are weakly conductive.

Conclusion

There is a conductor on each grid that trends southeast/northwest. It is conductive enough that its shape can be estimated as long and slender. It dips to the south and lies approximately 300 metres below the surface. However, these anomalies were found by observing the early time channels. The late time channels are less responsive and suggest the anomalies are very weakly conductive.

The GPS part of this survey was halted by the client before it could be completed. As a result, the geometrical parameters were never reconciled for these grids. This causes large Channel 1 responses in the data that are possibly due to geometrical error. Other Channel 1 responses could be due to magnetostatic UTEM responses which are outlined in Appendix D of the logistics report, which is attached below for convenience. In spite of this, the data collected is still a useful guide for the interpretation, although without accurate geometrical parameters we cannot discriminate between non-decaying Channel 1 only conductors, geometrical errors and magnetostatic responses.

Note on sources of anomalous Ch1

(from Appendix D in the Logistics Report for this survey)

This section outlines the possible sources of anomalous channel 1 which is not correlated to the Ch2-10 data plotted on the upper axes of a *channel 1 normalized* plot.

1) Mislocation of the transmitter loop and/or survey stations

Mislocating the transmitter loop and/or the survey stations results in an error in the calculated primary field at the station and appears as an anomalous Ch1 value not correlated to *channel 1 normalized* Ch2-10. The effect is amplified near the loop front. This can be seen in the profiles - the error in Ch1 generally increases approaching the loop. As a rule a 1% error in measurement of the distance from the loop will result in, for outside the loop surveys, an error in Ch1 of:

- 1% near the loop front (long-wire field varies as 1/r)
- 3% at a distance from the loop front (dipolar field varies as $1/r^3$)
- 2% at intermediate distances (intermediate field varies as $\sim 1/r^2$)

Errors in elevation result in smaller errors but as they often affect the chainage they accumulate along the line.

The in-loop survey configuration generally diminishes geometric error since the field gradients are very low. At the centre of the loop the gradient in the vertical field is essentially zero so it is difficult to introduce geometric anomalies near the loop centre. Near the loop sides and at the closest approach of the lines to the wire mislocation of the loop and the station becomes more critical. Typically loop sides are designed to be >200m from any survey stations.

2) Magnetostatic UTEM responses

Magnetostatic UTEM responses arise over rocks which generate magnetic anomalies. Such magnetic materials will amplify the total (primary + secondary) field of the UTEM transmitter which is sensed by the receiver coil. The secondary field is generated by subtracting a computed primary which does not include magnetic effects. This can give rise to strong and abrupt channel 1 anomalies when the source of the magnetics is at surface. This is the case in a number of places on these grids. UTEM magnetostatic anomalies differ from DC magnetic anomalies in the following three major ways:

- 1) In the case of DC magnetics the field is dipping N and is very uniform over the scale of the survey area while the UTEM field inside the loop is vertical and it is stronger near the loop edges.
- 2) Most aeromagnetics are collected as total field while with UTEM we measure a given (in this case the z) component.
- 3)DC magnetic instruments observe the total magnetization of the causative body which is due to its susceptibility as well as any remnant magnetization. An AC method such as UTEM will not respond to the remnant portion of the magnetization.

The larger amplitude of the UTEM Ch1 response is explained by the fact that the UTEM primary field is often more favourably coupled (magnetostatically speaking) to magnetic mineralization as compared to the earths field. Another factor could be the presence of a reverse remnant component to the magnetization.

Note that positive (*negative*) magnetic anomalies will cause:

- positive (negative) Ch1 anomalies in data collected outside the loop
- negative (positive) Ch1 anomalies in data collected inside the loop

3) Extremely good conductors

An extremely good conductor will be characterized by a time constant much longer than the half-period (@ 30Hz >>16ms). This will give rise to an anomalous Ch1 which is not correlated to the Ch2-10 data plotted on the upper axes of a *channel 1 normalized* plot.

Appendix 7: Original Analytical Results

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 16-SEP-2006

Account: UZJ

WS

CERTIFICATE VA06080537

Project: Canalask P.O. No.: YK-001

This report is for 35 Rock samples submitted to our lab in Vancouver, BC, Canada on

9-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

_	SAMPLE PREPARATION	
AL\$ CODE	DESCRIPTION	-
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	
CRU-QC	Crushing QC Test	

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS81	38 element fusion ICP-MS	ICP-MS
ME-XRF06	Whole Rock Package - XRF	XRF
OA-GRA06	LOI for ME-XRF06	WST-SIM
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO
As-AA61	Trace As - four acid digestion	AAS
V-AA61	Trace V - four-acid digestion	AAS
Cr-AA61	Trace Cr - four-acid digestion	AAS
Co-AA61	Trace Co - four-acid digestion	AAS
Ni-AA61	Trace Ni - four-acid digestion	AAS
Ni-AA62	Ore grade Ni - four acid / AA	AAS

To: FALCONBRIDGE LTD - LAVAL EXPLORATION

ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES

LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A - E) Finalized Date: 16-SEP-2006

Account: UZJ

										ERTIFI	CATE (OF ANA	LYSIS	VA060	80537	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS81 Ag ppm 1	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.5	ME-MS81 Co ppm 0.5	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Cu ppm 5	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01
RC276251 RC276252 RC276253 RC276254 RC276255		1.14 1.26 0.86 0.78 1.28											· · · · · ·			
RC276256 RC276257 RC276258 RC276259 RC276260	* ;	1.10 1.12 1.92 1.72 1.34														
RC276261 RC276262 RC276263 RC276264 RC276265		1.46 1.52 1.26 0.84 0.86								-						
RC276266 RC276267 RC276268 RC276269 RC276501		1.28 1.16 1.46 1.32 1.28				·										
RC276502 RC276503 RC276504 RC276505 RC276506	<u></u>	0.82 1.24 0.82 0.52 0.94														
RC276507 RC276508 RC276509 RC276510 RC276511		0.68 0.80 0.86 0.60 1.04														
RC276512 RC276513 RC276514 RC276515 RC276516		1.36 0.80 0.96 0.22 0.76	<1	699	36.7	22.2	10	0.63	87	4.70	2.84	1.44	16.8	4.73	2.9	1.00

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 2 (A - E)

Finalized Date: 16-SEP-2006 Account: UZJ

									CERTIFICATE OF ANALYSIS			LYSIS	VA060			
Sample Description	Method Analyte Units LOR	ME-MS81 La ppm 0.5	ME-MS81 Lu ppm 0.01	ME-MS81 Mo ppm 2	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1	ME-MS81 Ni ppm 5	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ρpm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05
RC276251 RC276252 RC276253 RC276254 RC276255											<u>-</u>					
RC276256 RC276257 RC276258 RC276259 RC276260	\$ 1															
RC276261 RC276262 RC276263 RC276264 RC276265									-							
RC276266 RC276267 RC276268 RC276269 RC276501																
RC276502 RC276503 RC276504 RC276505 RC276506																
RC276507 RC276508 RC276509 RC276510 RC276511																
RC276512 RC276513 RC276514 RC276515 RC276516		17.5	0.47	<2	4.6	20.7	151	<5	4.88	31.7	4.96	2	209	0.4	0.79	2.20

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschernex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 2 (A - E) Finalized Date: 16-SEP-2006

Account: UZJ

									ERTIF	ICATE C	F ANA	LYSIS	VA060	80537	
Method Analyte Units LOR	ME-MS81 Ti ppm 0.5	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ρpm 5	ME-MS81 W ppm 1	ME-MS81 Y pprn 0.5	ME-MS81 Yb ppm 0.03	ME-MS81 Zn ppm 5	ME-MS81 Zr ppm 2	ME-XRF06 SiO2 % 0.01	ME-XRF06 Al2O3 % 0.01	ME-XRF06 Fe2O3 % 0.01	ME-XRF06 CaO % 0.01	ME-XRF06 MgO % 0.01	ME-XRF06 Na2O % 0.01
* .															
			- 11		·										
										-					
	·														
	<0.5	0.41	1.02	190	7	25.7	2.69	111	91	59.66	15.84	9.86	0.75	3.11	3.94
	Analyte Units LOR	Analyte TI ppm 0.5	Analyte Units LOR 0.5 0.01	Analyte Units ppm ppm ppm O.5 O.01 O.05	Analyte Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Analyte Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	TI Tm U V W Y μppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Analyte TI Tm U V W Y Yb Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Method Method Ti Tm U V W Y Yb Zn	Method Analyte Til Tin U V W Y Yb Zn Zr Units Dpm Dpm Dpm Dpm Dpm Dpm Dpm Dpm Dpm Dpm	Mie-MS81 ME-	Me-MS81 Me-M	ME-MS81 ME-MS8	ME-MS81 ME-M	Naty Pi T Tm U V W Y Pi Zn Zr Sido A203 Fa203 CaO MgO With Milks LOR

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - D Total # Pages: 2 (A - E) Finalized Date: 16-SEP-2006

Account: UZJ

CERTIFICATE	OF ANALYSIS	VA06080537

								L			OAIL	JF ANA	_ 1 0 1 0	VAUbu	00337	
Sample Description	Method Analyte Units LOR	ME-XRF06 K2O % 0.01	ME-XRF06 Cr2O3 % 0.01	ME-XRF06 TiO2 % 0.01	ME-XRF06 MnO % 0.01	ME-XRF06 P2O5 % 0.01	ME-XRF06 SrO % 0.01	ME-XRF06 BaO % 0.01	ME-XRF06 LOI % 0.01	ME-XRF06 Total % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	As-AA61 As ppm 5	V-AA61 V ppm 5
RC276251 RC276252 RC276253 RC276254 RC276255											0.018 0.004 0.009 0.023 0.185	<0.005 <0.005 0.005 <0.005 <0.005	0.004 <0.001 0.009 0.003 0.005	0.03 1.14 0.38 1.94 4.51	35 19 47 35 42	161 52 267 215 59
RC276256 RC276257 RC276258 RC276259 RC276260	* 1										0.041 0.013 0.010 0.051 <0.001	<0.005 <0.005 <0.005 <0.005 <0.005	0.001 0.002 0.004 <0.001 0.001	16.45 0.46 1.61 0.10 0.04	1860 1220 59 30 17	7 101 321 20 14
RC276261 RC276262 RC276263 RC276264 RC276265											0.005 0.003 0.005 <0.001 0.001	0.065 0.098 0.028 0.017 0.039	0.082 0.148 0.033 0.013 0.056	0.05 0.02 0.07 0.02 0.20	32 35 41 34 31	10 21 102 122 102
RC276266 RC276267 RC276268 RC276269 RC276501					-						0.726 0.006 0.002 0.002 0.024	<0.005 0.018 0.031 <0.005 0.005	<0.001 0.021 0.053 <0.001 <0.001	0.91 0.01 0.20 0.24 15.95	8 29 31 18 36	<5 14 99 46 154
RC276502 RC276503 RC276504 RC276505 RC276506											0.024 0.023 0.018 0.002 0.002	<0.005 0.162 0.078 0.034 0.027	<0.001 0.331 0.129 0.039 0.035	5.66 0.44 0.20 0.05 0.08	28 16 24 20 16	165 121 87 65 34
RC276507 RC276508 RC276509 RC276510 RC276511											0.003 0.003 <0.001 0.072 0.012	0.069 0.094 0.016 <0.005 <0.005	0.158 0.208 0.011 0.001 <0.001	0.31 0.10 0.02 10.35 15.15	21 26 27 30 28	73 39 22 174 141
RC276512 RC276513 RC276514 RC276515 RC276516	-	1.27	<0.01	0.99	0.09	0.27	0.02	0.08	3.36	99.24	0.283 0.004 0.002 <0.001 <0.001	<0.005 <0.005 <0.005 0.008 <0.005	<0.001 0.002 <0.001 0.007 <0.001	5.32 0.09 0.03 0.02 0.62	90 22 13 14	262 218 223 101

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - E Total # Pages: 2 (A - E) Finalized Date: 16-SEP-2006

Account: UZJ

CERTIFICATE OF	ΔΝΔΙ ΥSIS	VANGORO537
	AITALIUIU	A WOODODA'I

						L					 		
Sample Description	Method Analyte Units LOR	Cr-AA61 Cr ppm 2	Co-AA61 Co ppm 5	Ni-AA61 Ni ppm 5	Ni-AA62 Ni % 0.01				_		_		
			_				-				 		 \dashv
RC276251		18	23	14									
RC276252		8	<5	<5									
RC276253		191	38	64									
RC276254		51	34	27									
RC276255		17	108	21									
RC276256		9	84	5		 			_				
RC276257	1	50	30	9									
RC276258	4	26	38	9									
RC276259		17	5	7									ı
RC276260		10	<5	15									
RC276261		2890	132	2610		 					 		 \neg
RC276262		3730	150	2880									i
RC276263		2320	116	1315									
RC276264		1830	93	889									
RC276265		3760	124	1695									
RC276266		58	7	29							 		
RC276266 RC276267		3240	, 141	29 2280									
RC276267 RC276268		4120	143	2400									ļ
RC276269		28	<5	23									
RC276501		58	941	>10000	1.56								
<u></u>		ļ			1.50	 		- ,			 		
RC276502		61	388	9750									
RC276503		2580	108	1960									
RC276504		3970	121	2590									
RC276505		3550	111	1925									
RC276506		3100	125	2130		 					 		
RC276507		4050	125	2300									
RC276508		3740	174	2800									
RC276509		3560	114	2330									
RC276510		68	481	4250									
RC276511		54	791	139				_					
RC276512		40	423	>10000	4.08								
RC276513		16	29	151									
RC276514													
RC276515		673	60	319									
RC276516		9	6	31									
								_				<u>.</u> .	

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 13-SEP-2006

Account: UZJ

CERTIFICATE VA06080538

Project: Canalask P.O. No.: YK-001

This report is for 38 Stream Sediment samples submitted to our lab in Vancouver, BC,

Canada on 9-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	
I		_

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
\$-IR08	Total Sulphur (Leco)	LECO
ME-ICP61	27 element four acid ICP-AES	ICP-AES

To: FALCONBRIDGE LTD - LAVAL EXPLORATION **ATTN: RICHARD NIEMINEN** 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Carl's silts. / Ant. # 505

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 13-SEP-2006

Account: UZJ

									CERTIFICATE OF ANALYSIS			YSIS	VA06080538			
Sample Description	Method	WEI-21	PGM-ICP23	PGM-ICP23	PGM-ICP23	S-IR08	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.	Au	Pt	Pd	S	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr
	Units	kg	ppm	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOR	0.02	0.001	0.005	0.001	0.01	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1
TC276201		0.70	0.039	0.007	0.008	0.22	<0.5	9.10	21	310	0.6	<2	6.37	<0.5	42	111
TC276202		0.64	0.036	<0.005	0.007	0.23	<0.5	8.85	23	280	0.6	4	5.87	<0.5	34	102
TC276203		0.24	0.069	<0.005	0.005	0.29	<0.5	8.18	16	370	0.9	3	2.96	<0.5	22	71
TC276204		0.62	0.021	<0.005	0.004	0.23	<0.5	8.88	18	380	0.9	<2	3.45	<0.5	33	87
TC276205		0.48	0.071	0.005	0.005	0.16	<0.5	8.39	17	360	0.7	<2	4.69	<0.5	30	181
TC276206 TC276207 TC276208 TC276209 TC276210	* *	0.52 0.36 0.48 0.48 0.50	0.026 0.006 0.056 0.023 0.020	0.011 <0.005 0.008 <0.005 0.011	0.007 0.005 0.004 0.005 0.006	0.18 0.16 0.14 0.25 0.14	<0.5 <0.5 <0.5 <0.5 <0.5	8.44 8.65 8.52 8.97 9.21	10 9 12 <5	260 760 340 490 430	0.6 1.1 0.7 0.8 0.8	<2 4 3 <2 <2	5.68 3.38 4.90 5.02 4.73	<0.5 <0.5 <0.5 <0.5 <0.5	35 22 33 34 31	104 219 183 188 141
TC276211 TC276212 TC276213 TC276214 TC276215		0.32 0.66 0.48 0.64 0.56	0.035 0.015 0.043 0.013 0.015	0.011 0.005 0.006 <0.005 <0.005	0.006 0.004 0.006 0.003 0.005	0.16 0.07 0.16 0.05 0.22	<0.5 <0.5 <0.5 <0.5 <0.5	9.15 8.50 8.60 8.12 8.26	11 7 15 5	480 330 440 300 420	0.9 0.7 0.8 0.6 0.8	3 3 2 3 3	4.66 5.18 4.58 5.67 4.45	<0.5 <0.5 <0.5 <0.5 <0.5	30 23 29 26 29	124 101 147 121 130
TC276216 TC276217 TC276218 TC276219 TC276220		0.34 0.42 0.36 0.48 0.42	0.014 0.008 0.010 0.152 0.235	<0.005 <0.005 <0.005 0.005 <0.005	0.006 0.009 0.006 0.007 0.005	0.29 0.25 0.30 0.20 0.24	0.7 <0.5 0.7 <0.5 0.8	7.23 7.83 7.72 8.63 8.55	18 28 38 36 51	660 260 430 350 380	0.8 0.7 0.8 0.8	2 2 3 <2 4	2.94 5.15 4.56 4.65 4.40	0.7 <0.5 <0.5 <0.5 <0.5	36 31 27 29 29	293 136 130 146 137
TC276221		0.42	0.034	0.005	0.007	0.24	<0.5	8.13	39	340	0.7	6	4.49	<0.5	27	114
TC276222		0.50	0.031	<0.005	0.007	0.24	<0.5	8.30	41	510	0.7	3	4.60	<0.5	30	153
TC276223		0.48	0.010	<0.005	0.005	0.29	<0.5	8.48	28	360	0.8	3	4.91	<0.5	30	139
TC276224		0.46	0.026	<0.005	0.005	0.16	<0.5	8.41	35	380	0.8	<2	4.46	0.6	28	129
TC276225		0.28	0.032	<0.005	0.006	0.20	<0.5	8.27	40	410	0.8	2	4.44	<0.5	26	128
TC276226	•	0.56	0.185	<0.005	0.003	0.22	<0.5	8.32	30	470	0.7	<2	4.61	<0.5	30	139
TC276227		0.52	0.279	0.074	0.005	0.14	<0.5	8.52	21	410	0.8	<2	4.39	<0.5	34	216
TC276228		0.24	0.028	<0.005	0.004	0.24	<0.5	8.38	38	340	0.8	<2	4.22	<0.5	32	117
TC276229		0.46	0.050	<0.005	0.005	0.18	<0.5	8.53	21	410	0.8	2	4.47	<0.5	32	174
TC276230		0.50	0.014	<0.005	0.005	0.15	<0.5	7.67	13	380	0.7	2	4.20	<0.5	28	192
TC276231 TC276294 TC276295 TC276296 TC276297		0.52 0.42 0.32 0.46 0.38	0.741 0.054 0.008 0.005 0.003	<0.005 0.014 <0.005 <0.005 0.006	0.006 0.020 0.002 0.013 0.023	0.21 0.22 0.40 0.27 0.25	<0.5 <0.5 <0.5 <0.5 <0.5	6.90 7.01 6.36 7.64 6.62	14 28 10 6 20	330 360 450 500 380	0.6 0.7 0.9 0.9 0.7	<2 <2 <2 <2 <2 <2	4.10 2.48 3.07 3.59 2.61	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	34 40 18 27 38	337 1480 105 608 1200
TC276298		0.44	0.005	0.007	0.011	0.21	<0.5	6.91	17	400	0.7	<2	2.71	<0.5	33	833
TC276299		0.50	0.011	<0.005	0.010	0.24	<0.5	6.88	11	420	0.8	<2	3.29	<0.5	30	586
TC276300		0.54	0.002	<0.005	0.003	0.11	<0.5	7.79	<5	570	0.9	<2	3.37	<0.5	17	240

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 13-SEP-2006

Account: UZJ

	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Cu	Fe	K	Mg	Mo	Мо	Na	Ni	Р	Pb	S	Sb	Sr	Ti	V
OIn Bassalation	Units	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ррт	%	ppm
Sample Description	LOR	1	0.01	0.01	0.01	5	1	0.01	1	10	2	0.01	5	1	0.01	1
TC276201		195	7.59	0.94	3.55	1300	2	2.01	47	1250	10	0.24	5	571	0.56	319
TC276202		180	7.07	0.88	3.28	1200	2	1.93	47	1090	6	0.18	<5	529	0.50	293
TC276203		207	6.67	1.22	1.78	1060	4	2.01	31	1500	12	0.09	<5	362	0.47	215
TC276204		170	6.98	1.35	2.31	1190	4	2.31	38	1480	12	0.17	6	426	0.46	245
TC276205		114	7.54	1.01	3.16	1165	2	2.02	60	1110	12	0.04	5	425	0.51	304
TC276206	3	161	7.12	0.85	3.22	1185	1	1.99	45	1070	9	0.22	<5	528	0.47	283
TC276207	1	59	5.42	1.40	2.40	1065	1	2.24	60	1060	10	0.05	<5	387	0.59	191
TC276208	·	142	9.02	1.04	3.15	1215	2	2.09	59	1170	9	0.12	< 5	469	0.53	387
TC276209		122	8.28	1.15	3.14	1250	2	2.19	58	1150	11	0.12	7_	491	0.59	357
TC276210		133	6.30	1.27	3.06	1170	2	2.28	56	980	10	0.09	<5	492	0.50	242
TC276211		129	6.43	1.24	2.97	1170	1	2.24	55	1110	16	0.09	5	478	0.50	243
TC276212		120	5.58	1.04	2.80	1090	1	2.44	39	990	6	0.01	<5	526	0.44	211
TC276213		122	6.76	1.16	2.87	1130	2	2.17	54	1030	10	0.09	<5	466	0.49	272
TC276214		90	6.78	0.93	3.08	1180	1	2.33	42	1020	7	0.02	<5	513	0.47	274
TC276215		143	6.25	1.15	2.78	1130	2	2.17	51	1070	10	0.10	9	448	0.48	242
TC276216		119	6.09	1.38	3.56	1135	2	1.29	151	820	20	0.17	<5	185	0.52	215
TC276217		187	6.78	0.78	3.14	1 115	1	1.60	58	1090	12	0.07	6	435	0.46	247
TC276218		140	6.90	0.92	2.35	995	2	1.60	45	1070	11	0.12	<5	382	0.47	26 9
TC276219		149	7.88	1.00	2.96	1140	2	1.83	49	1120	14	0.09	6	412	0.50	304
TC276220		142	7.92	0.95	2.85	1145	2	1.65	50	1100	16	0.14	6	372	0.51	312
TC276221	!	124	6.73	0.92	2.76	1105	2	1.71	43	970	9	0.11	<5	390	0.46	249
TC276222		145	7.95	0.91	2.87	1145	2	1.70	50	1080	13	0.11	6	392	0.48	312
TC276223		130	7.04	1.01	2.94	1180	2	1.91	47	1070	9	0.11	<5	436	0.49	268
TC276224		121	6.77	0.95	2.79	1100	1	1.71	50	980	13	0.09	<5	384	0.47	260
TC276225		113	7.04	0.95	2.85	1065	1	1.76	46	1050	14	0.09	 <5	381	0.49	275
TC276226		116	7.60	0.94	2.87	1110	1	1.74	50	1090	9	0.09	< 5	382	0.49	305
TC276227		132	9.55	1.11	2.88	1215	2	2.01	58	1170	6	0.14	<5	422	0.58	415
TC276228		152	6.62	0.97	2.76	1160	2	1.67	51 	1080	9	0.08	< 5	374	0.45	241
TC276229		118	8.39	1.16	3.03	1195	2 1	2.13	57	1070	11	0.07	6	436	0.53	346
TC276230		137	8.29	1.07	2.81	1125		2.05	49	1030	8	0.05	<u><5</u>	<u>417 </u>	0.51	342
TC276231		122	15.10	0.91	2.84	1245	1	1.79	55	960	10	0.11	6	360	0.60	707
TC276294		67	7.05	1.07	4.05	871	1	1.39	360	590	11	0.07	<5	259	0.49	167
TC276295		78 50	3.98	1.02	1.32	1100	1	1.57	38	860	10	0.15	<5	523	0.42	117
TC276296 TC276297		56 64	5.54 6.07	1.08 0.97	2.70	1065	1 1	2.16 1.49	135 352	720	8 11	0.07	<5 <5	355 269	0.63 0.47	177 151
					3.98	920				580		0.06			****	
TC276298		57	5.57	1.04	3.64	958	1	1.67	272	610	11	0.05	<5 -c	296	0.50	154
TC276299		63	5.17	1.09	3.37	911	1	1.81	231	660	8	0.08	<5	318	0.51	157
TC276300		32	4.17	1.18	2.33	813	<1	2.44	66	720	7	0.03	<5	368	0.57	165
		<u> </u>														

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 13-SEP-2006

Account: UZJ

				CERTIFICATE OF ANALYSIS	VA06080538
Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2		
TC276201 TC276202 TC276203 TC276204 TC276205 TC276206 TC276207	, , , , , , , , , , , , , , , , , , ,	<10 <10 <10 <10 <10 <10	102 88 90 89 90		
TC276208 TC276209 TC276210 TC276211 TC276212 TC276213	-	<10 <10 <10 <10 <10 <10	92 102 98 96 72 95		
TC276214 TC276215 TC276216 TC276217 TC276218 TC276219	<u> </u>	<10 <10 <10 <10 <10 <10	72 90 269 103 126 141		
TC276220 TC276221 TC276222 TC276223 TC276224 TC276225		<10 <10 <10 <10 <10 <10	150 135 148 151 140 130		
TC276226 TC276227 TC276228 TC276229 TC276230		<10 <10 <10 <10 <10 <10	134 102 141 108 93		
TC276294 TC276295 TC276296 TC276297		<10 <10 <10 <10	102 103 105 98		
TC276299 TC276300		<10 <10	91 83		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 13-SEP-2006

Account: UZJ

CERTIFICATE VA06080538

Project: Canalask P.O. No.: YK-001

This report is for 38 Stream Sediment samples submitted to our lab in Vancouver, BC,

Canada on 9-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO
ME-ICP61	27 element four acid ICP-AES	ICP-AES

To: FALCONBRIDGE LTD - LAVAL EXPLORATION

ATTN: CHRIS COCKBURN 3296, AVE FRANCIS-HUGHES

LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 13-SEP-2006

Account: UZJ

									CERTIFICATE OF A			F ANA	LYSIS	VA060	80538	
Sample Description	Method	WEI-21	PGM-ICP23	PGM-ICP23	PGM-ICP23	S-IR08	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.	Au	Pt	Pd	S	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co	Cr
	Units	kg	ppm	ppm	ppm	%	ppm	%	pprn	ppm	ppm	ppm	%	ppm	ρpm	ppm
	LOR	0.02	0.001	0.005	0.001	0.01	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1
TC276201		0.70	0.039	0.007	0.008	0.22	<0.5	9.10	21	310	0.6	<2	6.37	<0.5	42	111
TC276202		0.64	0.036	<0.005	0.007	0.23	<0.5	8.85	23	280	0.6	4	5.87	<0.5	34	102
TC276203		0.24	0.069	<0.005	0.005	0.29	<0.5	8.18	16	370	0.9	3	2.96	<0.5	22	71
TC276204		0.62	0.021	<0.005	0.004	0.23	<0.5	8.88	18	380	0.9	<2	3.45	<0.5	33	87
TC276205		0.48	0.071	0.005	0.005	0.16	<0.5	8.39	17	360	0.7	<2	4.69	<0.5	30	181
TC276206	***	0.52	0.026	0.011	0.007	0.18	<0.5	8.44	10	260	0.6	<2	5.68	<0.5	35	104
TC276207		0.36	0.006	<0.005	0.005	0.16	<0.5	8.65	9	760	1.1	4	3.38	<0.5	22	219
TC276208		0.48	0.056	0.008	0.004	0.14	<0.5	8.52	12	340	0.7	3	4.90	<0.5	33	183
TC276209		0.48	0.023	<0.005	0.005	0.25	<0.5	8.97	<5	490	0.8	<2	5.02	<0.5	34	188
TC276210		0.50	0.020	0.011	0.006	0.14	<0.5	9.21	12	430	0.8	<2	4.73	<0.5	31	141
TC276211		0.32	0.035	0.011	0.006	0.16	<0.5	9.15	11	480	0.9	3	4.66	<0.5	30	124
TC276212		0.66	0.015	0.005	0.004	0.07	<0.5	8.50	7	330	0.7	3	5.18	<0.5	23	101
TC276213		0.48	0.043	0.006	0.006	0.16	<0.5	8.60	15	440	0.8	2	4.58	<0.5	29	147
TC276214		0.64	0.013	<0.005	0.003	0.05	<0.5	8.12	5	300	0.6	3	5.67	<0.5	26	121
TC276215		0.56	0.015	<0.005	0.005	0.22	<0.5	8.26	11	420	0.8	3	4.45	<0.5	29	130
TC276216		0.34	0.014	<0.005	0.006	0.29	0.7	7.23	18	660	0.8	2	2.94	0.7	36	293
TC276217		0.42	0.008	<0.005	0.009	0.25	<0.5	7.83	28	260	0.7	2	5.15	<0.5	31	136
TC276218		0.36	0.010	<0.005	0.006	0.30	0.7	7.72	38	430	0.8	3	4.56	<0.5	27	130
TC276219		0.48	0.152	0.005	0.007	0.20	<0.5	8.63	36	350	0.8	<2	4.65	<0.5	29	146
TC276220		0.42	0.235	<0.005	0.005	0.24	0.8	8.55	51	380	0.8	4	4.40	<0.5	29	137
TC276221		0.42	0.034	0.005	0.007	0.24	<0.5	8.13	39	340	0.7	6	4.49	<0.5	27	114
TC276222		0.50	0.031	<0.005	0.007	0.24	<0.5	8.30	41	510	0.7	3	4.60	<0.5	30	153
TC276223		0.48	0.010	<0.005	0.005	0.29	<0.5	8.48	28	360	0.8	3	4.91	<0.5	30	139
TC276224		0.46	0.026	<0.005	0.005	0.16	<0.5	8.41	35	380	0.8	<2	4.46	0.6	28	129
TC276225		0.28	0.032	<0.005	0.006	0.20	<0.5	8.27	40	410	0.8	2	4.44	<0.5	26	128
TC276226	:	0.56	0.185	<0.005	0.003	0.22	<0.5	8.32	30	470	0.7	<2	4.61	<0.5	30	139
TC276227		0.52	0.279	0.074	0.005	0.14	<0.5	8.52	21	410	0.8	<2	4.39	<0.5	34	216
TC276228		0.24	0.028	<0.005	0.004	0.24	<0.5	8.38	38	340	0.8	<2	4.22	<0.5	32	117
TC276229		0.46	0.050	<0.005	0.005	0.18	<0.5	8.53	21	410	0.8	2	4.47	<0.5	32	174
TC276230		0.50	0.014	<0.005	0.005	0.15	<0.5	7.67	13	380	0.7	2	4.20	<0.5	28	192
TC276231 TC276294 TC276295 TC276296 TC276297	·	0.52 0.42 0.32 0.46 0.38	0.741 0.054 0.008 0.005 0.003	<0.005 0.014 <0.005 <0.005 0.006	0.006 0.020 0.002 0.013 0.023	0.21 0.22 0.40 0.27 0.25	<0.5 <0.5 <0.5 <0.5 <0.5	6.90 7.01 6.36 7.64 6.62	14 28 10 6 20	330 360 450 500 380	0.6 0.7 0.9 0.9 0.7	<2 <2 <2 <2 <2 <2	4.10 2.48 3.07 3.59 2.61	<0.5 <0.5 <0.5 <0.5 <0.5	34 40 18 27 38	337 1480 105 608 1200
TC276298		0.44	0.005	0.007	0.011	0.21	<0.5	6.91	17	400	0.7	<2	2.71	<0.5	33	833
TC276299		0.50	0.011	<0.005	0.010	0.24	<0.5	6.88	11	420	0.8	<2	3.29	<0.5	30	586
TC276300		0.54	0.002	<0.005	0.003	0.11	<0.5	7.79	<5	570	0.9	<2	3.37	<0.5	17	240

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 13-SEP-2006

Account: UZJ

										ERTIF	CATE C	F ANA	LYSIS	VA060	80538	
Sample Description	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sr	Ti	V
	Units	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm
	LOR	1	0.01	0.01	0.01	5	1	0.01	1	10	2	0.01	5	1	0.01	1
TC276201 TC276202 TC276203 TC276204 TC276205		195 180 207 170 114	7.59 7.07 6.67 6.98 7.54	0.94 0.88 1.22 1.35 1.01	3.55 3.28 1.78 2.31 3.16	1300 1200 1060 1190 1165	2 2 4 4 2	2.01 1.93 2.01 2.31 2.02	47 47 31 38 60	1250 1090 1500 1480 1110	10 6 12 12 12	0.24 0.18 0.09 0.17 0.04	5 <5 <5 6 5	571 529 362 426 425 528	0.56 0.50 0.47 0.46 0.51	319 293 215 245 304
TC276207 TC276208 TC276209 TC276210	*	59 142 122 133	5.42 9.02 8.28 6.30	1.40 1.04 1.15 1.27	2.40 3.15 3.14 3.06	1065 1215 1250 1170	1 2 2 2 2	2.24 2.09 2.19 2.28	60 59 58 56 55	1060 1170 1150 980	10 9 11 10	0.05 0.12 0.12 0.09	<5 <5 7 <5	387 469 491 492	0.59 0.53 0.59 0.50	191 387 357 242 243
TC276212		120	5.58	1.04	2.80	1090	1	2.44	39	990	6	0.01	<5	526	0.44	211
TC276213		122	6.76	1.16	2.87	1130	2	2.17	54	1030	10	0.09	<5	466	0.49	272
TC276214		90	6.78	0.93	3.08	1180	1	2.33	42	1020	7	0.02	<5	513	0.47	274
TC276215		143	6.25	1.15	2.78	1130	2	2.17	51	1070	10	0.10	9	448	0.48	242
TC276216 TC276217 TC276218 TC276219 TC276220		119 187 140 149 142	6.09 6.78 6.90 7.88 7.92	1.38 0.78 0.92 1.00 0.95	3.56 3.14 2.35 2.96 2.85	1135 1115 995 1140 1145	2 1 2 2 2	1.29 1.60 1.60 1.83 1.65	151 58 45 49 50	820 1090 1070 1120 1100	20 12 11 14 16	0.17 0.07 0.12 0.09 0.14	<5 6 <5 6	185 435 382 412 372	0.52 0.46 0.47 0.50 0.51	215 247 269 304 312
TC276221		124	6.73	0.92	2.76	1105	2	1.71	43	970	9	0.11	<5	390	0.46	249
TC276222		145	7.95	0.91	2.87	1145	2	1.70	50	1080	13	0.11	6	392	0.48	312
TC276223		130	7.04	1.01	2.94	1180	2	1.91	47	1070	9	0.11	<5	436	0.49	268
TC276224		121	6.77	0.95	2.79	1100	1	1.71	50	980	13	0.09	<5	384	0.47	260
TC276225		113	7.04	0.95	2.85	1065	1	1.76	46	1050	14	0.09	<5	381	0.49	275
TC276226		116	7.60	0.94	2.87	1110	1	1.74	50	1090	9	0.09	<5	382	0.49	305
TC276227		132	9.55	1.11	2.88	1215	2	2.01	58	1170	6	0.14	<5	422	0.58	415
TC276228		152	6.62	0.97	2.76	1160	2	1.67	51	1080	9	0.08	<5	374	0.45	241
TC276229		118	8.39	1.16	3.03	1195	2	2.13	57	1070	11	0.07	6	436	0.53	346
TC276230		137	8.29	1.07	2.81	1125	2	2.05	49	1030	8	0.05	<5	417	0.51	342
TC276231 TC276294 TC276295 TC276296 TC276297		122 67 78 56 64	15.10 7.05 3.98 5.54 6.07	0.91 1.07 1.02 1.08 0.97	2.84 4.05 1.32 2.70 3.98	1245 871 1100 1065 920	1 1 1 1	1.79 1.39 1.57 2.16 1.49	55 360 38 135 352	960 590 860 720 580	10 11 10 8 11	0.11 0.07 0.15 0.07 0.06	6 <5 <5 <5 <5	360 259 523 355 269	0.60 0.49 0.42 0.63 0.47	707 167 117 177 151
TC276298	_	57	5.57	1.04	3.64	958	1	1.67	272	610	11	0.05	<5	296	0.50	154
TC276299		63	5.17	1.09	3.37	911	1	1.81	231	660	8	0.08	<5	318	0.51	157
TC276300		32	4.17	1.18	2.33	813	<1	2.44	66	720	7	0.03	<5	368	0.57	165

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 13-SEP-2006

Account: UZJ

				·		CERTIFIC	ATE OF ANA	ALYSIS	VA06080	538	
Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2								
TC276201 TC276202 TC276203 TC276204 TC276205	<u>-</u>	<10 <10 <10 <10 <10	102 88 90 89 90								
TC276206 TC276207 TC276208 TC276209 TC276210	**	<10 10 <10 <10 <10	82 111 92 102 98								
TC276211 TC276212 TC276213 TC276214 TC276215		<10 <10 <10 <10 <10	96 72 95 72 90								
TC276216 TC276217 TC276218 TC276219 TC276220		<10 <10 <10 <10 <10	269 103 126 141 150		_						-
TC276221 TC276222 TC276223 TC276224 TC276225		<10 <10 <10 <10 < 10	135 148 151 140 130								
TC276226 TC276227 TC276228 TC276229 TC276230	-	<10 <10 <10 <10 <10	134 102 141 108 93								
TC276231 TC276294 TC276295 TC276296 TC276297	<u>-</u>	<10 <10 <10 <10 <10	105 102 103 105 98								
TC276298 TC276299 TC276300		<10 <10 <10	95 91 83					_			·

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE VA06083054

Project: Canalask P.O. No.: YK-001

This report is for 141 Soil samples submitted to our lab in Vancouver, BC, Canada on

28-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
SCR-41	Screen to -180um and save both
LOG-22	Sample login - Rcd w/o BarCode

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO
ME-ICP61	27 element four acid ICP-AES	ICP-AES

500

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN

3296, AVE FRANCIS-HUGHES

LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com .

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE OF ANALYSIS	VA06083054
· · · · · · · · · · · · · · · · · · ·	

Sample Description SC276701 SC276702	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au	PGM-ICP23 Pt	PGM-ICP23	S-IR08	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
SC276702	-	v.u.	ppm 0.001	ррт 0.005	Pd ppm 0.001	S % 0.01	Ag ppm 0.5	Al % 0.01	As ppm 5	Ba ppm 10	Be ppm 0.5	Bi ppm 2	Ca % 0.01	Cd ppm 0.5	Co ppm 1	Cr ppm 1
SC276702		0.50	0.005	<0.005	0.004	0.02	<0.5	7,80	17	550	1.0	<2	2.61	<0.5	27	300
		0.52	0.003	<0.005	0.004	0.02	<0.5 <0.5	7.46	17	560	1.0	<2	2.61	<0.5	33	251
SC276703		0.56	0.003	<0.005	0.007	0.02	<0.5	7.56	14	600	1.0	<2	2.74	<0.5	36	296
SC276704		0.40	0.005	0.009	0.002	0.03	<0.5	7.54	13	600	1.1	<2	2.88	<0.5	22	132
SC276705	!	0.44	0.020	0.009	0.002	0.05	<0.5	7.30	39	410	0.7	<2	2.84	<0.5	27	292
SC276706	_	0.68	0.012	<0.005	0.003	0.01	<0.5	6.90	13	520	0.9	<2	2.69	<0.5	16	170
SC276707	. I	0.50	0.002	< 0.005	0.002	0.03	<0.5	6.69	11	490	0.9	<2	3.21	<0.5	22	158
SC276708		0.50	0.002	< 0.005	0.001	0.03	<0.5	6.22	18	520	0.9	<2	7.09	<0.5	16	73
SC276709		0.46	0.005	< 0.005	0.001	0.02	<0.5	7.57	<5	640	1.1	<2	2.72	<0.5	17	97
SC276710		0.26	0.002	<0.005	0.002	0.05	<0.5	5.97	10	620	0.9	<2	2.43	<0.5	17	69
SC276711		0.48	<0.001	<0.005	<0.001	<0.01	<0.5	7.91	7	590	1.2	<2	2.34	<0.5	17	89
SC276712		0.46	0.002	<0.005	0.001	0.01	<0.5	7.77	18	570	1.2	<2	2.23	<0.5	20	121
SC276713		0.58	0.006	<0.005	0.004	0.02	<0.5	7.30	14	660	1.2	<2	2.76	<0.5	20	123
SC276714		0.46	0.003	< 0.005	0.002	0.01	<0.5	7.81	19	650	1.1	<2	2.43	<0.5	23	129
SC276715		0.42	0.001	<0.005	0.001	0.01	<0.5	7.77	15	600	1.1	<2	2.22	<0.5	17	116
SC276716		0.72	<0.001	<0.005	0.005	0.01	<0.5	7.58	5	570	1.1	<2	2.30	<0.5	25	277
SC276717		0.64	0.001	<0.005	0.003	0.02	<0.5	6.54	18	510	1.0	<2	2.55	<0.5	21	125
SC276718	1	0.48	0.003	800.0	0.005	0.02	<0.5	6.59	16	500	0.9	<2	3.13	<0.5	20	177
SC276719		0.42	0.001	<0.005	0.006	0.04	<0.5	5.92	6	480	0.9	<2	3.02	<0.5	21	154
SC276720		0.60	0.006	<0.005	0.009	0.02	<0.5	7.19	11	630	1.1	<2	2.71	<0.5	23	168
SC276721		0.70	0.004	<0.005	0.003	0.01	13.5	7.33	9	580	1.1	<2	2.70	<0.5	21	173
SC276722		0.38	0.003	<0.005	0.003	0.03	<0.5	4.13	7	490	0.7	<2	3.53	<0.5	8	56
SC276723		0.70	0.037	<0.005	0.002	0.03	<0.5	7.64	56	740	1.0	<2	2.40	<0.5	28	195
SC276724 SC276725		0.50 0.58	0.001 0.004	<0.005 <0.005	0.002 0.001	0.01 0.02	<0.5 <0.5	7.61 6.87	14 16	610 650	1.2 1.1	<2 <2	2.36 2.62	<0.5 <0.5	20 20	119 112
SC276726		0.54	0.003	<0.005	0.003	0.03	<0.5	6.83	9	620	1.0	<2	2.53	<0.5	20	123
SC276727		0.48	0.003	<0.005	0.001	0.04	<0.5	6.91	8	540	1.0	<2	2.58	<0.5	21	128
SC276728		0.58	0.004	<0.005	0.003	0.03	<0.5	6.93	14	570 560	1.0	<2	2.52	<0.5	18	110
SC276729		0.72	0.003 0.002	<0.005	0.002	0.01	2.0 <0.5	7.24 7.81	13 15	560 600	1.1	<2	2.45	<0.5 <0.5	18 20	138 126
SC276730		0.56		<0.005	0.002	<0.01					1.2	<2	2.46			
SC276731 SC276732		0.60 0.48	0.005 0.002	<0.005 <0.005	0.006 0.004	0.02 0.01	<0.5 <0.5	7.00 7.17	8 7	560 590	1.0 1.1	<2 <2	2.43 2.52	<0.5 <0.5	29 15	375 152
SC276733		0.46	0.002	<0.005	0.004	0.01	<0.5 <0.5	6.03	, 16	450	0.8	<2	3.02	<0.5 <0.5	18	223
SC276734		0.54	0.003	<0.005	0.003	0.04	<0.5 <0.5	7.28	15	450 610	1.1	<2 <2	3.02	<0.5 <0.5	21	223 147
SC276735		0.66	0.002	0.005	0.003	0.02	<0.5	6.74	<5	500	1.0	<2	3.45	<0.5	19	156
SC276736		0.54	<0.001	<0.005	0.001	0.01	<0.5	7.71	10	510	1.1	<2	2.72	<0.5	20	137
SC276737		0.48	0.004	<0.005	0.001	0.31	<0.5	7.13	8	530	1.0	<2	2.89	<0.5	20	124
SC276738		0.70	0.003	<0.005	0.001	0.21	<0.5	7.99	13	630	1.3	<2	2.90	<0.5	22	133
SC276740		0.30	0.002	0.028	<0.001	0.51	<0.5	4.35	12	420	0.8	<2	3.29	<0.5	12	55
SC276741		0.40	< 0.001	<0.005	<0.001	0.45	<0.5	4.97	7	450	0.8	<2	3.03	<0.5	10	58

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE OF ANALYSIS VA060

Sample Description	Method Analyte Units LOR	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1
SC276701		71	5.40	1.03	2.61	812	3	2.02	187	480	11	0.01	<5	315	0.52	165
SC276701		127	5.61	0.91	2.31	1310	3	1.61	259	760	10	0.03	5	275	0.48	159
SC276702 SC276703		84	4.99	0.95	2.50	878	2	1.74	284	840	8	0.03	< 5	296	0.53	154
SC276704		56	4.56	0.94	1.42	907	2	1.87	73	770	7	0.03	<5	338	0.56	148
SC276705		74	5.20	1.11	2.27	927	3	1.26	158	650	7	0.10	<5	249	0.45	168
ļ																
SC276706	1	63	4.32	1.15	1.94	785	1	2.07	57	680	6	0.02	<5	280	0.48	156
SC276707	4.1	44	4.60	0.95	1.82	890	1	1.75	62	730	12	0.04	<5	278	0.52	142
SC276708	`	60	4.13	1.07	1.23	1155	1	1.28	37	530	12	0.07	<5	247	0.37	110
SC276709		60	4.46	1.05	1.35	941	1	1.90	41	670	10	0.04	<5	322	0.52	137
SC276710		56	3.55	0.90	0.83	800	1	1.53	27	1110	9	0.08	<5	301	0.39	92
SC276711		30	4.37	1.21	1.27	599	1	2.18	37	270	10	0.01	<5	379	0.55	131
SC276712		62	5.23	0.87	1.39	611	2	1.79	51	370	10	0.01	<5	284	0.61	161
SC276713		104	4.59	0.94	1.45	817	1	1.75	61	850	7	0.03	<5	290	0.54	145
SC276714		56	4.97	0.93	1.62	803	1	1.91	60	500	8	0.01	<5	292	0.58	158
SC276715		41	4.94	0.94	1,37	638	1	1.83	44	310	8	0.01	<5	289	0.62	158
SC276716		78	5.28	1.12	2.61	831	<1	1.84	165	590	9	0.01	<5	257	0.53	166
SC276717		73	4.02	0.95	1.27	712	1	1.67	93	710	14	0.04	<5	295	0.51	123
SC276718		73	4.00	0.91	1.73	748	1	1.64	120	1000	10	0.08	<5	310	0.48	125
SC276719		70	3.87	0.82	1.50	1135	<1	1.42	108	1020	9	0.07	<5	278	0.43	115
SC276720		84	4.50	1.02	1.54	957	1	1.83	134	640	11	, 0.04	<5	322	0.51	132
SC276721		91	4.74	1.03	2.04	847	1	1.88	95	800	12	0.02	<5	292	0.54	149
SC276722		86	2.39	0.63	0.70	1065	1	1.11	27	930	6	0.15	<5	259	0.30	65
SC276723		83	5.75	1.53	2.20	1045	3	1.81	81	370	23	0.04	<5	256	0.54	186
SC276724		45	4.82	1.03	1.26	729	1	1.90	45	610	9	0.02	<5	315	0.61	151
SC276725		66	4.27	0.99	1.32	1210	<1	1.69	52	920	12	0.05	<5	296	0.52	133
SC276726		48	4.10	1.04	1.62	757	1	1.60	55	870	9	0.05	<5	266	0.53	129
SC276727		47	4.66	0.95	1.58	966	1	1.70	52	900	6	0.06	<5	282	0.54	147
SC276728		61	4.32	0.96	1.42	997	<1	1.72	47	1030	31	0.05	<5	293	0.52	129
SC276729		74	4.40	1.06	1.60	926	1	1.86	60	650	7	0.03	<5	291	0.54	149
SC276730		47	5.11	0.95	1.50	688	1	1.87	54	430	8	0.02	<5	295	0.60	154
SC276731		82	5.38	1.05	3.18	953	<1	1.86	295	520	7	0.01	<5	253	0.51	161
SC276732		61	3.98	1.10	1.21	677	1	1.96	79	470	12	0.02	<5	335	0.59	133
SC276733		50	4.03	0.95	2,12	735	<1	1.67	106	850	7	0.09	<5	274	0.45	125
SC276734		63	4.46	1.07	1.63	953	1	1.90	69	810	9	0.04	<5	328	0.52	138
SC276735		76	4.18	0.98	1.94	598	1	1.84	81	770	15	0.07	<5	305	0.47	133
SC276736		55	4.90	0.95	1.72	671	<1	1.98	63	320	10	0.01	<5	314	0.54	154
SC276737		45	4.58	0.96	1.63	960	1	1.86	49	930	12	0.05	<5	317	0.54	142
SC276738		106	5.09	1.02	1.65	828	1	1.93	67	730	10	0.02	<5	322	0.63	155
SC276740		70	2.55	0.58	0.74	909	1	1.10	34	1060	2	0.13	<5	246	0.30	65
SC276741		30	2.44	0.84	0.75	592	<1	1.39	21	930	3	0.12	<5	293	0.34	75
<u></u>		<u> </u>		•									-			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE	A- 41	413/010	114000000
(,PB liPit,VIP	TIL AN	AI VCIC	ANNURUS SUEV
CERTIFICATE			

				<u></u>	CERTIFICATE OF ANALYSIS	VAU6083054
Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2			
SC276701 SC276702 SC276703 SC276704 SC276705	•	<10 <10 <10 <10 <10	91 92 105 84 98			
SC276706 SC276707 SC276708 SC276709 SC276710	***	<10 <10 10 <10 <10	79 120 125 115 54			
SC276711 SC276712 SC276713 SC276714 SC276715		<10 <10 <10 <10 <10	69 83 97 105 83			
SC276716 SC276717 SC276718 SC276719 SC276720		<10 <10 <10 <10 <10	104 111 91 83 80			
SC276721 SC276722 SC276723 SC276724 SC276725		<10 <10 <10 <10 <10	98 58 214 105 91			
SC276726 SC276727 SC276728 SC276729 SC276730		<10 <10 <10 <10 <10	276 106 126 94 85			
SC276731 SC276732 SC276733 SC276734 SC276735		<10 <10 <10 <10 <10	90 100 102 98 124			
SC276736 SC276737 SC276738 SC276740 SC276741		<10 <10 <10 <10 <10	81 179 107 60 53			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - A Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFIC	ATE OF	ANALYSIS	VA06083054
	AIL V E	AITALIOIO	YAUUUUJUJA

									CERTIFICATE OF ARALTOID VACCOUGUS							
Sample Description	Method Analyte Units LOR	WEI-21 Recyd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1
SC276742 SC276901		0.38 0.50	0.008 0.004	<0.005 <0.005	<0.001 0.001	0.20 0.14	<0.5 <0.5	7.71 7.31	11 23	550 540	1.3 1.2	2 <2	2.21 2.85	<0.5 <0.5	19 26	84 181
SC276902		0.52	0.007	0.019	0.021	0.34	<0.5	6.50	17	540	1.0	< <u>2</u>	2.42	0.6	27	190
SC276903		0.20	0.001	<0.005	0.002	0.41	<0.5	5.25	6	460	0.8	<2	2.23	<0.5	10	81
SC276904		0.34	0.001	<0.005	0.001	0.18	<0.5	7.04	22	520	0.9	<2	2.19	<0.5	22	131
SC276905		0.44	0.003	<0.005	<0.001	0.14	<0.5	7.21	22	530	1,1	<2	1.88	<0.5	21	139
SC276906	!	0.32	0.001	< 0.005	0.001	0.15	<0.5	7.29	23	580	1.0	<2	2.11	<0.5	21	123
SC276907	- 1	0.34	0.002	<0.005	0.002	0.25	<0.5	6.75	20	530	1.0	<2	2.51	<0.5	19	129
SC276908	1	0.36	0.006	< 0.005	0.002	0.20	<0.5	6.93	15	560	1.1	<2	2.65	<0.5	20	128
SC276909		0.40	0.002	<0.005	0.003	0.25	<0.5	7.11	12	550	1.0	<2	2.67	<0.5	16	127
SC276910		0.10	0.006	<0.005	0.001	0.49	<0.5	4,54	13	450	0.8	<2	2.73	<0.5	20	66
SC276911		0.58	0.002	<0.005	0.002	0.23	<0.5	7.16	17	580	1.1	<2	2.36	<0.5	21	132
SC276912		0.54	0.004	< 0.005	0.006	0.13	<0.5	7.31	10	550	1.0	<2	2.61	<0.5	24	161
SC276913		0.44	0.003	<0.005	0.002	0.16	<0.5	7.49	18	570	1.1	<2	2.68	<0.5	17	141
SC276914		0.54	0.002	<0.005	0.003	0.26	<0.5	6.97	23	560	1.0	<2	2.71	<0.5	22	142
SC276915		0.48	0.002	< 0.005	0.001	0.19	<0.5	7.43	23	540	1.1	<2	2.49	<0.5	22	150
SC276916		0.54	0.002	< 0.005	0.001	0.15	0.6	7.82	18	560	1.2	<2	2.27	<0.5	22	139
SC276917]	0.34	0.002	< 0.005	0.002	0.19	<0.5	7.15	13	580	1.1	<2	2.82	<0.5	20	140
SC276918	l	0.50	0.001	<0.005	0.003	0.26	<0.5	6.82	14	550	1.0	<2	2.45	<0.5	14	94
SC276919		0.44	0.003	<0.005	<0.001	0.21	<0.5	7.29	22	570	1.2	<2	2.54	<0.5	21	113
SC276920		0.38	0.004	<0.005	0.001	0.13	<0.5	7.22	7	580	1.1	<2	2.56	<0.5	18	115
SC276921		0.22	0.004	<0.005	0.004	0.33	<0.5	6.18	7	490	0.9	<2	3.14	<0.5	12	80
SC276922		0.56	0.004	<0.005	0.003	0.19	<0.5	7.51	18	560	1.0	<2	2.43	<0.5	24	16 1
SC276923		0.64	0.002	<0.005	0.004	0.31	<0.5	6.98	18	690	1.1	<2	3.06	<0.5	20	120
SC276924		0.22	0.004	<0.005	0.003	0.13	<0.5	8.09	18	610	1.2	<2	2.46	<0.5	23	181
SC276926		0.20	0.002	< 0.005	0.002	0.29	<0.5	6.56	13	550	0.9	<2	2.74	0.5	18	113
SC276927		0.54	0.003	<0.005	0.004	0.24	<0.5	7.44	16	630	1.1	<2	2.67	<0.5	21	136
SC276928	1	0.52	0.003	0.006	0.003	0.27	<0.5	6.68	19	530	1.0	<2	2.71	<0.5	23	145
SC276929		0.36	0.002	<0.005	<0.001	0.25	<0.5	7.06	26	450	1.0	<2	2.41	<0.5	18	120
SC276930		0.22	<0.001	<0.005	0.001	0.17	<0.5	7.06	9	620	1.1	<2	2.64	<0.5	16	94
SC276931		0.24	0.003	<0.005	<0.001	0.16	<0.5	7.60	28	500	1.0	<2	1.67	<0.5	19	123
SC276932		0.38	0.002	< 0.005	0.002	0.19	<0.5	7.53	16	640	1.1	<2	2.63	<0.5	18	129
SC276933		0.52	0.011	0.006	0.010	0.04	<0.5	7.27	21	570	1.0	<2	2.57	<0.5	33	408
SC276934		0.24	<0.001	<0.005	<0.001	0.05	<0.5	5.77	14	470	0.8	<2	2.50	<0.5	16	104
SC276935		0.40	0.002	0.005	<0.001	<0.01	<0.5 ————	7.21	12	610	1.1	<2	2.20	<0.5	11	75
SC276936		0.60	0.005	<0.005	0.004	0.03	<0.5	7.52	23	620	1.1	<2	2.93	<0.5	22	126
SC276937		0.64	0.004	< 0.005	0.002	0.02	<0.5	7.86	23	610	1.2	<2	2.96	<0.5	21	135
SC276938		0.52	0.004	< 0.005	<0.001	0.03	<0.5	6.94	15	590	1.1	<2	2.91	<0.5	17	106
SC276939		0.32	0.001	<0.005	0.001	0.02	<0.5	7.22	13	560	1.0	<2	2.41	<0.5	13	102
SC276940		0.34	0.002	<0.005	<0.001	0.01	<0.5	7.38	16	590	1.0	2	2.62	<0.5	16	110

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - B Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

										ERTIFI	CATE C	OF ANA	<u>LYSIS</u>	VA060	<u>83054 </u>	
Sample Description	Method Analyte Units LOR	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1
SC276742		66	4.77	1.14	1.30	899		1.34	38	680	7	0.04	<u></u>	237	0.47	133
SC276901		138	5.49	1.01	2.18	856	1	1.90	98	360	20	0.02	<5	326	0.52	164
SC276902		110	4.26	0.98	2.42	734	1	1.66	206	750	13	0.09	<5	284	0.45	137
SC276903		42	3.06	0.80	0.90	469	2	1.33	34	1070	8	0.10	<5	275	0.37	95
SC276904		44	4.86	0.88	1.44	664	2	1.69	55	400	14	0.03	<5	292	0.52	158
SC276905		46	4.63	0.85	1.50	746	2	1.62	63	250	14	0.01	<5	264	0.48	164
SC276906	\$	40	4.82	0.91	1.41	843	2	1.78	50	410	12	0.02	<5	308	0.54	157
SC276907		62	4.09	0.90	1.64	684	1	1.61	66	860	10	0.04	<5	297	0.45	135
SC276908		51	4.14	1.03	1.68	1075	1	1.85	62	880	8	0.03	<5	339	0.45	135
SC276909		35	4.38	0.94	1.60	508	<1	1.75	44	540	12	0.05	<5	314	0.51	147
SC276910		49	3.36	0.65	0.82	3660	2	1.10	38	1200	7	0.12	<5	263	0.29	83
SC276911		63	4.58	1.00	1.64	741	1	1.77	60	810	10	0.03	<5	308	0.48	147
SC276912		115	4.74	1.08	2.12	859	<1	1.87	91	770	8	0.02	<5	298	0.49	163
SC276913		50	4.17	1.02	1.75	617	<1	1.87	58	650	12	0.03	<5	322	0.54	159
SC276914		71	4.43	0.92	1.63	1025	1	1.73	63	840	8	0.04	<u><5</u>	316	0.50	152
SC276915		54	4.87	1.01	1.76	767	1	1.90	68	450	12	0.02	<5	320	0.54	165
SC276916		58	5.24	0.86	1.50	706	2	1.90	68	400	11	0.01	<5	327	0.58	168
SC276917		87	4.59	0.90	1.61	916	1	1.68	62	890	17	0.04	<5	314	0.54	147
SC276918		61	3.83	1.04	1.27	596	1	1.82	42	530	12	0.03	<5	354	0.46	123
SC276919		121	4.62	0.94	1.53	891	1	1.71	59	740	13	0.03	<u><5</u>	326	0.46	137
SC276920		73	4.40	0.96	1.49	949	1	1.80	55	750	13	0.02	<5	340	0.50	139
SC276921		73	3.12	0.87	0.94	488	1	1.61	30	570	9	0.06	<5	358	0.41	97
SC276922		73	4.79	0.99	1.83	828	1	1.75	65	840	11	0.04	<5	300	0.52	162
SC276923		100	4.49	0.89	1.42	810	1	1.60	67	830	12	0.05	<5	310	0.46	140
SC276924		102	4.95	1.09	1.99	84 5	2	1.89	88	720	12	0.02	<u>-</u> 5	310	0.55	171
SC276926		47	3.76	0.88	1.48	689	<1	1.63	54	880	11	0.05	<5	310	0.45	130
SC276927		94	4.55	0.98	1.66	1245	1	1.84	72	800	13	0.03	<5	338	0.50	146
SC276928		79	4.51	0.88	1.70	1130	1	1.73	79	820	13	0.04	<5	300	0.45	140
SC276929		45	4.84	0.77	1.17	562	4	1.55	63	410	56	0.04	<5	274	0.47	139
SC276930		41	3.90	1.08	1.18	1075	2	1.92	34	960	10	0.02	<5	387	0.49	121
SC276931		51	6.07	0.82	1.16	467	3	1.70	49	410	18	0.02	<5	264	0.68	211
SC276932		57	4.25	1.02	1.46	819	1	1.92	65	580	12	0.02	<5	370	0.51	134
SC276933	!	104	5.58	0.93	3.40	933	<1	1.91	274	660	14	0.01	<5	302	0.53	165
SC276934	j	48	3.50	0.86	1.39	719	1	1.40	49	910	10	0.07	5	262	0.40	119
SC276935		37	3.64	1.15	1.02	491	1	2.00	30	300	10	0.01	<5	396	0.45	110
SC276936		63	4.79	1.04	1.70	853	1	1.86	57	740	9	0.03	<5	335	0.52	150
SC276937		72	4.65	1.09	1.64	791	2	1.97	55	790	9	0.03	<5	359	0.57	161
SC276938		100	4.34	1.03	1.35	991	1	1.69	53	1020	9	0.07	<5	348	0.45	130
SC276939		43	4.29	1.02	1.07	478	2	1.97	35	360	6	0.02	<5	348	0.54	127
SC276940		41	4.26	1.08	1.23	593	1	2.05	42	400	8	0.02	<5	372	0.52	124

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - C Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFIC	ATF OF	ANALYSIS	VA06083054
	~ I – VI	MINTE I UIU	

				CERTIFICATE OF ARTICLES VACCOUGE
Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
SC276742 SC276901 SC276902 SC276903 SC276904		<10 <10 <10 <10 <10	71 151 109 75 101	
SC276905 SC276906 SC276907 SC276908 SC276909	- 128 - 128 - 128	<10 <10 <10 <10 <10	121 99 95 94 85	
SC276910 SC276911 SC276912 SC276913 SC276914		<10 <10 <10 <10 <10	97 88 112 91 99	
SC276915 SC276916 SC276917 SC276918 SC276919		<10 <10 <10 <10 <10	99 114 104 77 86	
SC276920 SC276921 SC276922 SC276923 SC276924		<10 <10 <10 <10 <10	94 59 115 78 105	
SC276926 SC276927 SC276928 SC276929 SC276930		<10 <10 <10 <10 <10	86 95 98 123 106	
SC276931 SC276932 SC276933 SC276934 SC276935		<10 <10 <10 <10 <10	118 85 107 85 71	
SC276936 SC276937 SC276938 SC276939 SC276940		<10 <10 <10 <10 <10	100 96 104 85 97	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 4 - A Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFIC	ATF OF	ANALYSIS	VA06083054
OLIVIII IO	~ I L V I		TAUUUUUUT

												7 7 4 4 7 4		VAUGU	5000 1	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1
SC276941		0.38	0.003	<0.005	<0.001	0.01	<0.5	7.09	11	550	1.0	<2	2.41	<0.5	15	115
SC276942		0.44	0.003	< 0.005	<0.001	0.01	<0.5	7.29	13	570	0.9	<2	2.39	<0.5	15	121
SC276943		0.36	0.002	< 0.005	<0.001	0.01	<0.5	7.15	19	560	1.0	<2	2.53	<0.5	17	101
SC276944		0.42	0.002	< 0.005	0.002	0.01	<0.5	7.45	13	570	. 1.0	<2	2.73	<0.5	17	131
SC276945		0.58	0.003	<0.005	<0.001	0.01	<0.5	7.46	21	560	1.0	<2	2.34	<0.5	16	129
SC276946	.	0.32	0.003	<0.005	0.002	0.02	<0.5	7.41	12	690	1.1	<2	3.07	<0.5	11	65
SC276947	- 1	0.40	0.004	<0.005	0.001	0.01	<0.5	7.54	13	740	1.2	<2	2.61	<0.5	10	51
SC276948	- ₹	0.42	0.001	0.009	0.003	0.03	0.8	7.07	19	670	1.1	<2	2.86	<0.5	13	69
SC276949	ľ	0.44	0.019	0.017	0.010	0.03	<0.5	6.61	30	500	0.9	<2	2.37	<0.5	50	591
SC276950		0.44	0.006	<0.005	0.007	0.03	<0.5	7.14	26	530	1.0	<2	2.36	<0.5	41	355
SC276951		0.56	0.011	0.013	0.012	0.02	<0.5	6.99	24	550	0.9	<2	2.54	0.5	56	706
SC276952		0.50	0.002	<0.005	0.001	0.02	<0.5	7.76	9	590	1.0	<2	2.56	<0.5	18	127
SC276953		0.54	0.005	<0.005	<0.001	0.01	<0.5	7.94	9	630	1.2	<2	2.47	<0.5	18	122
SC276954		0.44	<0.001	<0.005	<0.001	0.01	<0.5	8.23	16	650	1.3	<2	2.51	<0.5	20	123
SC276955		0.60	0.003	0.006	0.003	0.02	<0.5	8.14	15	640	1.2	<2	2.48	<0.5	18	113
SC276956		0.54	0.001	<0.005	<0.001	0.01	<0.5	8.09	15	640	1.2	<2	2.42	<0.5	15	104
SC276957		0.44	0.001	0.035	<0.001	0.03	<0.5	7.95	11	600	1.2	<2	2.18	<0.5	22	118
SC276958	,	0.42	<0.001	<0.005	0.001	0.02	<0.5	8.00	20	600	1.2	<2	2.19	<0.5	20	116
SC276959		0.44	0.001	<0.005	<0.001	0.01	<0.5	7.80	17	600	1.2	<2	2.20	<0.5	18	127
SC276960	_	0.56	0.004	<0.005	0.001	0.02	<0.5	8.12	20	630	1.1	<2	2.65	<0.5	20	149
SC276961		0.42	0.006	<0.005	0.002	0.01	<0.5	7.72	16	720	1.3	<2	2.47	<0.5	12	74
SC276962		0.38	0.007	0.006	0.015	0.04	<0.5	6.99	33	500	0.8	<2	2.44	<0.5	38	597
SC276963		0.56	800.0	0.007	0.017	0.04	<0.5	7.29	27	490	0.8	<2	2.36	<0.5	42	724
SC276964		0.60	0.006	0.011	0.014	0.03	<0.5	7.19	36	490	0.8	<2	2.24	<0.5	40	700
SC276965		0.62	0.021	0.011	0.014	0.04	<0.5	7.31	36	500	8.0	<2	2.38	<0.5	37	546
SC276966		0.50	0.003	<0.005	0.005	0.03	<0.5	7.02	13	540	0.9	<2	3.97	<0.5	20	147
SC276967		0.48	0.006	<0.005	0.007	0.06	<0.5	6.06	14	490	8.0	<2	3.87	<0.5	21	170
SC276968	í	0.42	0.003	<0.005	0.003	0.04	<0.5	7.32	15	540	0.9	<2	2.99	<0.5	15	214
SC276969		0.46	0.009	<0.005	0.003	0.19	<0.5	7.60	10	640	1.0	<2	2.68	0.6	23	139
SC276970		0.48	0.014	<0.005	0.002	0.28	<0.5	7.44	15	630	1.1	<2	2.66	<0.5	23	135
SC276971		0.48	0.018	<0.005	0.001	0.23	<0.5	7.86	23	620	1.0	<2	2.74	<0.5	27	154
SC276972	ļ	0.42	0.006	<0.005	0.003	0.21	<0.5	7.64	22	610	1.0	<2	2.62	<0.5	26	141
SC276973		0.42	0.004	<0.005	0.001	0.16	<0.5	8.34	13	730	1.3	<2	2.78	<0.5	23	137
SC276974		0.54	0.003	<0.005	0.002	0.10	<0.5	8.13	30	1090	1.2	<2	2.95	<0.5	32	201
SC276975		0.56	0.003	<0.005	0.005	0.22	<0.5	8.09	<5	620	1.0	<2	3.27	0.5	20	253
SC276976		0.44	0.004	<0.005	0.002	0.27	<0.5	7.76	11	590	1.0	<2	3.10	<0.5	22	179
SC276977	ļ	0.46	< 0.001	< 0.005	0.004	0.37	<0.5	6.93	<5	550	0.9	<2	3.31	<0.5	18	145
SC276978		0.52	0.003	<0.005	0.004	0.29	<0.5	8.06	<5	620	1.0	<2	3.28	<0.5	21	166
SC276979		0.38	0.002	<0.005	0.002	0.08	<0.5	8.08	<5	670	1.1	<2	3.04	<0.5	19	112
SC276980		0.76	0.003	<0.005	0.012	0.13	<0.5	7.72	13	500	1.0	<2	3.76	0.6	31	913

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 4 - B Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFIC	ATE OF	ANALYSIS	VA06083054
	715 71		VAUUUUUUT

									·	<u> </u>	OAIL C	1 010		¥70000		
Sample Description	Method Analyte Units LOR	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1
SC276941		43	4.28	1,02	1.21	573	2	1,94	40	370	8	0.02	<5	335	0.56	136
SC276942		45	4.24	1.09	1.37	566	2	2.05	49	360	7	0.01	<5	343	0.51	129
SC276943	İ	41	3.86	1.16	1.22	577	2	2.08	41	370	9	0.02	<5	379	0.49	118
SC276944		46	4.48	1.07	1.46	661	1	2.10	45	460	9	0.02	<5	350	0.58	142
SC276945		39	4.90	0.91	1.31	560	2	1,91	44	290	10	0.01	<5	313	0.60	147
SC276946		58	3.58	1.29	0.95	500	1	2.19	25	460	8	0.04	<5	440	0.42	85
SC276947	- 3	32	3.28	1.59	0.92	528	1	2.43	22	290	13	0.02	<5	486	0.40	83
SC276948	- 1	111	3.36	1.21	0.96	631	2	2.00	28	560	7	0.04	<5	420	0.41	91
SC276949	ı	133	5.44	1.01	2.99	1375	1	1.46	404	600	13	0.04	<5	270	0.44	152
SC276950		103	5.43	1.09	2.13	1365	1	1.50	229	680	9	0.04	< 5	264	0.45	162
SC276951		143	5.84	1.00	3.19	1555	1	1.55	435	670	11	0.04	<5	289	0.45	155
SC276952		54	4.55	1.10	1.71	674	1	2.02	73	410	11	0.02	<5	353	0.51	153
SC276953		58	4.55	1.16	1.62	625	1	2.12	70	350	15	0.02	<5	371	0.53	152
SC276954		67	4.81	1.13	1.46	683	1	2.08	82	370	11	0.01	<5	381	0.56	152
SC276955		58	4.64	1.19	1.57	663	1	2.18	80	350	11	0.01	<5	391	0.53	152
SC276956		47	4.26	1.26	1.48	586	1	2.26	58	330	10	0.01	<5	412	0.51	140
SC276957		63	4.85	0.95	1.48	821	2	1.87	53	400	11	0.02	<5	341	0.55	148
SC276958	- 1	51	4.78	1.01	1.49	713	2	1.92	52	350	13	0.01	<5	347	0.58	151
SC276959		51	4.76	0.97	1,52	731	1	1.86	48	380	9	0.01	5_	329	0.58	150
SC276960		47	4.98	1.06	1.74	835	1	2.06	59	620	10	0.01	<5	348	0.55	169
SC276961	i	38	3.37	1.45	1.03	777	1	2.34	25	460	10	0.02	<5	474	0.44	101
SC276962		88	5.24	1.03	2.81	1140	1	1.43	387	710	12	0.06	<5	326	0.46	152
SC276963		88	5.79	1.05	3.55	1285	1	1.43	396	700	10	0.05	<5	313	0.45	166
SC276964		76	5.67	1.06	3.26	1240	2	1.44	349	620	10	0.05	<5	304	0.48	168
SC276965		75	5.50	1.09	3.13	1185	1	1.46	392	680	15	0.06	<5	336	0.47	161
SC276966		89	4.29	1.12	2.01	919	<1	1.95	77	980	12	0.05	<5	334	0.45	147
SC276967		83	4.03	0.96	2.04	893	<1	1.59	84	930	8	0.08	<5	280	0.40	136
SC276968		38	3.95	1.05	2.09	608	<1	2.24	63	630	9	0.04	<5	360	0.47	149
SC276969		51	4.85	1.02	1.62	745	1	1.89	67	540	10	0.04	<5	345	0.51	155
SC276970		56	4.78	1.02	1.58	750	<u><1</u>	1.86	62	560	14	0.04	<5 <u></u>	342	0.51	152
SC276971		46	5.15	0.98	1.75	850	1	1.89	71	560	15	0.04	<5	342	0.52	162
SC276972		46	4.98	0.97	1.69	808	1	1.85	67	510	10	0.04	<5	330	0.51	158
SC276973		50	5.16	1.03	1.54	1145	1	1.95	58	520	12	0.01	<5	375	0.59	163
SC276974		81	5.60	0.80	2.68	1115	1	1.94	126	500	19	0.01	<5	336	0.56	185
SC276975		46	3.89	1.17	2.27	634	<1	2.32	82	740	9	80.0	8	351	0.58	170
SC276976		60	4.67	1.12	2.21	722	<1	1.94	100	850	10	0.08	<5	316	0.48	149
SC276977		51	4.08	1.02	1.88	748	<1	1.82	88	970	12	0.13	6	315	0.44	128
SC276978		60	4.41	1.19	2.33	764	<1	2.06	99	960	13	0.10	<5	331	0.48	149
SC276979		47	4.03	1.38	1.51	782	<1	2.59	40	640	9	0.02	< 5	447	0.50	129
SC276980		102	6.59	1.08	3.33	1575	<1	2.17	261	900	11	0.05	5	371	0.67	201

EXCELLENCE IN ANALYTICAL CHEMISTRY

Al S Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 4 - C Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE	OF ANALYSIS	VA06083054

						IKIN IOAIL	OI ANALIOIO	17000000	
	Method Analyte	ME-ICP61 W	ME-ICP61 Zn						
Sample Description	Units LOR	ppm 10	ppm 2						
SC276941		<10	86		_				
SC276942		<10	77						
SC276943		<10	83						
SC276944		<10	89						
SC276945		<10	84			· -			
SC276946		<10	75						
SC276947	- F.	<10	74						
SC276948	4	<10	76						
SC276949	ſ	<10	154						
SC276950		<10	165						
SC276951		<10	160						
SC276952		<10	83						
SC276953		<10	86						
SC276954		<10	87						
SC276955		<10	83	<u>. </u>					
SC276956		<10	81						
SC276957		<10	91	*					
SC276958	ł	<10	91						
SC276959		<10 <10	86						
SC276960			90						
SC276961		<10	72						
SC276962		<10	92						
SC276963		<10	101	·		•			
SC276964		<10 <10	99 100						
SC276965					<u> </u>				
SC276966		<10	99						
SC276967		<10	100						
SC276968		<10	73		4				
SC276969 SC276970		<10 <10	105 107						
							<u> </u>		
SC276971		<10	108						
SC276972		<10	104						
SC276973		<10	102						
SC276974 SC276975		<10 <10	97 97						
SC276976		<10	127						
SC276977		<10	125						
SC276978		<10	134						
SC276979 SC276980		10 10	72 105						
302/0800		10	100			_	_		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES **LAVAL QC H7L 5A7**

Page: 5 - A Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

Project: Canalask

	CERTIFICA	TE OF	ANALYSIS	VA06083054
--	-----------	-------	----------	------------

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1
SC276981		0.52	0.009	<0.005	0.002	0.17	<0.5	7.47	11	560	1.1	<2	3.21	0.5	20	154
SC276982		0.78	0.047	<0.005	0.002	0.24	<0.5	7.65	11	540	0.9	<2	3.74	<0.5	19	220
SC276983		0.48	0.003	<0.005	0.002	0.10	<0.5	8.41	<5	630	1.1	<2	3.06	<0.5	21	153
SC276984		0.44	0.001	<0.005	0.002	0.08	<0.5	7.95	5	580	1.0	<2	3.12	<0.5	22	170
SC276985		0.46	0.001	<0.005	0.002	0.16	<0.5	8.12	8	660	1.1	<2	3.19	<0.5	20	127
SC276986		0.84	0.013	<0.005	0.002	0.21	<0.5	8.17	25	580	1.2	<2	3.65	<0.5	27	152
SC276987	3	0.54	< 0.001	0.013	0.003	0.20	<0.5	6.88	13	480	0.9	<2	3.57	<0.5	20	157
SC276988	1	0.36	0.003	0.010	0.004	0.20	<0.5	8.33	7	640	1.2	<2	3.89	<0.5	23	107
SC276989		0.36	0.002	<0.005	0.006	0.17	<0.5	7.59	<5	590	1.3	<2	3.20	<0.5	23	114
SC276990		0.34	0.004	<0.005	0.001	0.12	<0.5	8.37	5	660	1.1	<2	2.76	0.5	24	119
SC276991		0.38	<0.001	<0.005	0.001	0.15	<0.5	8.33	13	670	1.2	<2	2.55	<0.5	21	98
SC276992		0.38	0.002	<0.005	0.001	0.11	<0.5	8.28	<5	640	1.2	<2	2.65	<0.5	24	105
SC276993		0.38	0.005	<0.005	0.002	0.16	<0.5	8.00	10	690	1.2	<2	3.05	<0.5	22	113
SC276994		0.54	0.005	<0.005	0.003	0.15	<0.5	8.05	5	700	1.2	<2	2.92	<0.5	26	149
SC276995		0.50	0.002	<0.005	0.001	0.18	<0.5	8.21	18	640	1.1	<2	2.89	<0.5	21	136
SC276996		0.38	0.004	<0.005	0.004	0.24	<0.5	7.94	9	600	1.1	<2	3.17	<0.5	25	170
SC276997	,	0.28	0.002	< 0.005	0.003	0.33	<0.5	7.04	13	540	0.9	<2	3.37	0.5	21	134
SC276998		0.52	0.013	0.009	0.011	0.28	<0.5	7.76	37	430	0.7	<2	2.22	<0.5	45	725
SC276999		0.60	0.007	<0.005	0.011	0.21	<0.5	8.01	10	620	1,1	<2	3.11	<0.5	31	255
SC277000		0.36	0.006	<0.005	0.006	0.31	<0.5	7.14	5	640	1.0	<2	3.15	<0.5	28	173
SC277001	_	Not Recyd														

SC277001

SC277001

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 5 - B Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

									(ERTIF	CATE	F ANA	LYSIS	VA060	83054			
Sample Description	Method Analyte Units LOR	Analyte Units	Analyte Units	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1
SC276981		53	4.34	1.13	1.89	903	<1	2.39	51	940	4	0.01	<5	363	0.51	157		
SC276982		42	4.61	1.11	2.05	1195	<1	2.26	49	780	4	0.06	<5	398	0.62	165		
SC276983		39	4.89	1.13	1.75	895	<1	2.43	46	660	8	0.02	7	390	0.56	157		
SC276984		31	4.63	1.17	1.92	752	<1	2.45	53	700	7	0.01	<5	375	0.55	163		
SC276985		47	4.52	1.25	1.68	848	<1	2.37	45	780	10	0.02	<5	401	0.53	144		
SC276986	*	59	6.08	1.10	2.35	1320	1	2.34	56	1380	10	0.04	7	401	0.67	185		
SC276987		43	4.85	0.91	1.86	965	<1	1.98	51	1010	7	0.07	<5	355	0.56	150		
SC276988		194	4.86	0.98	1.63	909	<1	2.20	56	1010	11	0.04	8	474	0.57	155		
SC276989		301	4.61	0.91	1.35	982	<1	1.89	61	730	4	0.04	8	349	0.52	141		
SC276990		40	5.13	1.08	1.48	854	<1	2.22	43	460	12	0.01	<5	372	0.62	160		
SC276991		42	4.86	1.19	1.38	722	<1	2.26	40	440	9	0.01	<5	397	0.58	141		
SC276992		40	4.80	1.13	1.40	668	1	2.24	38	430	10	0.01	<5	391	0.57	142		
SC276993		77	4.84	1.06	1.42	899	<1	2.06	50	590	10	0.03	6	375	0.55	142		
SC276994		71	4.94	1.08	1.72	903	<1	1.97	60	830	8	0.03	<5	319	0.56	156		
SC276995		42	5.38	0.93	1.48	629	<1	2.09	50	390	8	0.02	5	338	0.64	168		
SC276996		83	4.88	1.19	2.16	761	<1	2.05	77	810	11	0.05	7	305	0.55	172		
SC276997		54	4.08	1.01	1.68	678	<1	1.85	53	890	5	0.07	<5	317	0.49	135		
SC276998		67	6.22	1.13	3.64	1090	<1	1.40	291	680	30	0.06	<5	278	0.45	164		
SC276999		155	5.22	1.20	2.65	814	<1	2.11	230	850	7	0.05	<5	335	0.51	154		
SC277000		106	4.49	1.01	1.85	973	<1	1.83	185	790	9	0.06	<5	331	0.42	127		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 5 - C Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

						CERTIFICATE O	F ANALYSIS	VA0608305	4
Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2						
SC276981 SC276982 SC276983 SC276984 SC276985 SC276986 SC276987	3	<10 10 <10 <10 <10 <10	70 98 77 68 75 114 91			-			
SC276988 SC276989 SC276990 SC276991 SC276992	**************************************	<10 <10 <10 <10 <10	93 66 100 80 76		 	<u>. </u>			
SC276993 SC276994 SC276995 SC276996 SC276997 SC276998		<10 <10 <10 <10 <10 <10	75 112 89 104 100 102	······································	 				
SC276999 SC277000 SC277001		10 <10	117 83		 -				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com . To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296. AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 3-OCT-2006

Account: UZJ

CERTIFICATE VA06092276

Project: #506 ANT P.O. No.: YK-002

This report is for 176 Soil samples submitted to our lab in Vancouver, BC, Canada on

25-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	27 element four acid ICP-AES	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES **LAVAL QC H7L 5A7**

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

CERTIFICATE OF ANALYSIS VA06092276

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Au Check ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pt Check ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP23 Pd Check ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5
TC276651 TC276652 TC276653 TC276654 TC276655	:	0.48 0.46 0.64 0.38 0.60	0.010 0.004 0.009 0.003 0.003		<0.005 <0.005 <0.005 <0.005 <0.005		0.004 0.003 <0.001 0.006 0.002		<0.5 <0.5 <0.5 0.6 <0.5	8.25 7.99 8.36 7.00 8.22	9 <5 <5 8 <5	460 440 470 460 480	1.0 1.0 1.0 1.0	<2 <2 <2 <2 <2	3.61 3.55 3.52 3.15 3.43	<0.5 <0.5 <0.5 <0.5 <0.5
TC276656 TC276657 TC276658 TC276659 TC276660	445	0.48 0.42 0.54 0.42 0.30	0.012 0.002 0.002 0.003 0.001		<0.005 <0.005 <0.005 <0.005 <0.005		0.003 0.002 0.002 0.003 0.001		<0.5 <0.5 <0.5 <0.5 <0.5	8.11 7.75 8.37 8.30 7.76	10 14 <5 5 5	470 440 610 500 470	0.9 0.9 1.1 1.0 0.9	<2 <2 <2 <2 <2 <2	3.53 3.32 2.63 3.43 3.25	<0.5 <0.5 <0.5 <0.5 <0.5
TC276661 TC276662 TC276663 TC276664 TC276665		0.50 0.54 0.40 0.56 0.46	0.002 0.003 <0.001 0.004 0.001		<0.005 <0.005 <0.005 <0.005 <0.005		0.002 0.002 <0.001 0.003 0.002		<0.5 <0.5 <0.5 <0.5 <0.5	8.16 8.30 7.57 8.16 8.01	6 11 13 17 <5	540 530 540 520 520	1.0 1.0 0.9 1.0	<2 <2 <2 <2 <2 <2	3.14 3.16 3.17 3.35 3.52	<0.5 <0.5 <0.5 <0.5 <0.5
TC276667 TC276668 TC276670 TC276671 TC276672		0.46 0.60 0.60 0.68 0.36	0.258 0.008 0.057 0.037 0.007		<0.005 <0.005 <0.005 <0.005 <0.005		0.003 0.003 0.003 0.002 0.004		<0.5 <0.5 1.0 <0.5 <0.5	8.04 8.17 8.14 8.30 8.29	42 32 52 40 8	620 460 560 600 770	0.9 1.0 1.0 1.0	<2 <2 <2 <2 <2	3.30 3.14 3.36 4.06 3.69	<0.5 <0.5 <0.5 <0.5 <0.5
TC276673 TC276674 TC276675 TC276676 TC276677		0.42 0.36 0.42 0.62 0.56	0.028 0.022 0.110 0.046 0.106		<0.005 <0.005 <0.005 <0.005 <0.005		<0.001 0.004 0.002 0.004 0.005		<0.5 <0.5 0.6 <0.5 <0.5	7.95 8.06 8.36 8.24 8.00	21 18 26 39 39	610 720 630 680 600	0.9 1.0 1.0 0.9 0.9	<2 <2 <2 <2 <2 <2	4.01 3.58 4.70 4.23 3.74	<0.5 <0.5 <0.5 <0.5 <0.5
TC276678 TC276679 TC276680 TC276681 TC276682	-	0.46 0.18 0.50 0.34 0.70	0.027 0.011 <0.001 <0.001 0.001		<0.005 <0.005 <0.005 <0.005 <0.005		0.008 0.005 0.001 0.001 0.002		<0.5 <0.5 <0.5 <0.5 <0.5	7.93 7.94 6.84 7.28 8.20	15 24 23 22 36	570 480 310 340 350	0.9 0.8 0.6 0.6 0.7	<2 <2 <2 <2 <3 <	3.87 4.07 2.08 2.23 2.12	<0.5 <0.5 <0.5 <0.5 <0.5
TC276683 TC276684 TC276685 TC276686 TC276687		0.56 0.64 0.62 0.56 0.64	0.010 0.206 0.003 0.079 0.086		<0.005 <0.005 <0.005 <0.005 <0.005		0.004 0.004 <0.001 0.003 0.005		<0.5 <0.5 <0.5 <0.5 <0.5	8.60 7.78 8.99 8.18 8.30	20 25 21 23 16	630 1040 510 820 770	0.8 0.7 0.8 0.7 0.7	4 3 5 4 4	4.00 4.60 2.17 3.93 3.91	<0.5 <0.5 <0.5 <0.5 <0.5
TC276688 TC276689 TC276690 TC276691 TC276692		0.40 0.46 0.76 0.42 0.44	0.006 0.202 0.012 0.183 0.002		<0.005 <0.005 <0.005 <0.005 <0.005		0.001 0.004 0.002 0.002 0.003		<0.5 <0.5 <0.5 <0.5 0.8	8.61 8.21 8.49 8.84 8.84	12 20 13 8 21	490 950 960 550 410	0.9 0.7 0.8 1.0 0.8	3 5 3 2 3	3.50 3.91 4.53 3.53 4.12	<0.5 <0.5 <0.5 <0.5 <0.5

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

CERTIFICATE OF ANALYSIS VA06092276

												71 741474		177000		
Sample Description	Method Analyte Units LOR	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1
TC276651	-	25	125	119	5.17	1.18	2.45	1085	2	1.53	51	1090	6	0.05	9	507
TC276652		24	115	104	4.83	1.14	2.29	938	2	1.55	46	1070	13	0.06	5	496
TC276653		25	129	107	5.20	1.21	2.51	1065	1	1.68	54	1100	10	0.04	<5	539
TC276654		18	101	100	4.11	0.98	1.79	758	1	1.36	50	1320	8	0.10	5	369
TC276655		22	125	93	4.99	1.23	2.41	1005	2	1.71	53	1070	11	0.04	<5	536
TC276656		21	130	88	4.97	1.15	2.35	949	1	1.71	51	1020	6	0.05	6	507
TC276657		21	125	92	4.75	1.14	2.30	852	1	1.63	46	970	10	0.04	5	494
TC276658	- 1	19	107	51	4.82	1.31	1.69	1365	1	1.77	44	980	8	0.06	8	339
TC276659		22	124	91	4.97	1.22	2.40	964	2	1.78	50	1000	6	0.04	13	530
TC276660		20	127	72	4.60	1.11	2.10	928	1	1.76	44	950	5	0.05	10	454
TC276661		18	118	62	4.58	1.17	1.91	906	1	1.87	43	1000	13	0.06	8	418
TC276662		20	115	66	4.61	1.21	1.99	868	1	1.97	43	940	7	0.05	<5	453
TC276663		19	106	49	5.24	1.04	1.67	1435	2	1.79	37	950	7	0.05	8	440
TC276664		20	117	86	4.75	1.20	2.23	794	1	1.78	47	1070	10	0.05	9	470
TC276665		19	119	75	4.97	1.14	2.01	824	1	1.83	45	990	12	0.06	10	422
TC276667	,	23	116	124	6.02	1.22	2.10	920	2	1.56	43	980	10	0.13	16	386
TC276668		20	100	88	5.43	1.15	2.20	944	2	1.79	38	960	9	0.06	10	385
TC276670		28	107	118	5.89	1.30	2.09	908	2	1.58	44	990	12	0.13	11	390
TC276671		29	107	134	5.95	1.33	2.34	1025	2	1.64	44	1000	13	0.18	14	401
TC276672		26	159	91	6.08	1.21	2.41	1030	1	1.87	58	900	10	0.08	<5	386
TC276673		23	85	85	5.10	1.30	2.23	988	1	1.46	39	910	11	0.12	14	480
TC276674		24	114	98	5.89	1.28	2.35	989	2	1.57	43	1030	10	0.13	10	451
TC276675		24	91	114	5.47	1.36	2.35	1070	1	1.57	46	1020	14	0.13	12	507
TC276676		26	113	99	5.82	1.33	2.49	1070	1	1.67	47	980	11	0.17	9	476
TC276677		26	169	100	6.60	1.25	2.67	933	3	1.69	53	920	10	0.07	<5	406
TC276678		25	123	107	5.90	1.24	2.48	970	3	1.60	47	980	14	0.10	5	414
TC276679		26	142	102	6.13	1.19	2.75	1005	2	1.68	50	900	11	0.07	<5	413
TC276680		15	48	51	4.61	1.13	0.92	667	3	1.40	33	640	13	0.18	<5	272
TC276681		10	55	46	3.84	1.13	0.62	525	2	1.16	28	690	10	0.13	<5	240
TC276682		15	63	54	4.53	1.55	0.81	565	1	1.03	37	680	12	0.23	<5	195
TC276683		26	152	113	6.93	1.24	2.76	1095	<1	1.87	52	900	11	0.11	<5	395
TC276684		29	260	106	11.15	1.03	2.96	1230	1	1.70	52	930	11	0.29	<5	379
TC276685		21	63	52	5.11	1.40	1.34	953	1	1.57	28	620	11	0.13	<5 -5	290
TC276686 TC276687		27 27	239 189	97 104	10.25	1.16	2.67	1150 1140	1	1.70 1.78	55 53	1030	9 3	0.21	<5 <5	355
					8.19	1.17	2.67		•			910		0.15	<5	373
TC276688		17	118	44	5.07	1.14	2.04	951	<1	2.11	43	820	9	0.04	<5	414
TC276689		27	241	94	10.10	1.14	2.68	1150	1	1.71	53	970	11	0.19	<5 .5	370
TC276690		30	194	108	9.06	1.18	2.88	1195	<1	1.88	55 47	960	11	0.24	<5	416
TC276691 TC276692		21 29	121 132	74 120	5.79 7.49	1.20 0.88	2.39 3.38	915 1155	<1 <1	1.93 1.83	47 56	1180	6 5	0.05	<5 <5	472 392
10210032		23	132	120	7.49	0.00	3.36	1100	~1	1.03	90	1090	Đ	0.05	<0	392

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com .

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

							CERTIFICATE OF ANALYSIS VA06092276
	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	S-IR08	
	Analyte	Τi	v	w	Zn	s	
	Units	%	ppm	ppm	ppm	%	•
Sample Description	LOR	0.01	1	10	2	0.01	
TC276651		0.49	182	<10	110	0.05	
TC276652		0.46	170	<10	105	0.05	
TC276653		0.48	184	<10	107	0.04	
TC276654		0.42	134	<10	97	0.09	
TC276655		0.47	178	<10	104	0.04	
TC276656	- 1	0.48	172	<10	100	0.04	
TC276657	' ,	0.47	171	<10	104	0.05	
TC276658	` '	0.52	153	<10	110	0.05	J
TC276659		0.49	176	<10	101	0.03	
TC276660		0.47	157 	<10	95	0.05	
TC276661		0.52	153	<10	100	0.06	
TC276662		0.50	158	<10	101	0.05	
TC276663		0.55	155	<10	135	0.05	
TC276664		0.49	167	<10	111	0.05	
TC276665		0.52	164	<10	107	0.07	
TC276667		0.47	200	<10	111	0.12	
TC276668		0.49	189	<10	108	0.06	i
TC276670		0.46	201	<10	111	0.13	
TC276671		0.48	205	<10	114	0.15	
TC276672		0.66	226	<10	130	0.06	
TC276673		0.43	172	<10	106	0.13	
TC276674		0.47	211	<10	112	0.12	
TC276675		0.47	189	<10	125	0.13	
TC276676		0.48	204	<10	118	0.14	
TC276677		0.57	253	<10	115	0.05	
TC276678 TC276679		0.49 0.53	204	<10 <10	111	0.10 0.06	
TC276680		0.36	223 107	<10	104 115	0.06	1
TC276681		0.30	118	<10	103	0.10	i
TC276682		0.40	135	<10	114	0.10	
TC276683		0.50	274	<10	108	0.14	
TC276684		0.64	484	<10	104	0.30	<u> </u>
TC276685		0.49	166	<10	82	0.12	
TC276686		0.60	441	<10	111	0.21	
TC276687		0.53	328	<10	103	0.15	
TC276688		0.50	174	<10	89	0.05	
TC276689		0.57	418	<10	103	0.17	
TC276690		0.56	379	<10	108	0.21	
TC276691		0.59	178	<10	108	0.05	
TC276692		0.62	224	<10	109	0.04	.
1							

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - A Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

CERTIFICATE OF ANALYSIS VA06092276

Sample Description	Method Analyte Units LQR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Au Check ppm 0,001	PGM-ICP23 Pt ppm 0,005	PGM-ICP23 Pt Check ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP23 Pd Check ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5
TC276693 TC276694 TC276696 TC276697 TC276698		0.62 0.54 0.38 0.46 0.68	0.006 0.008 0.002 0.001 <0.001		<0.005 <0.005 <0.005 <0.005 <0.005		0.002 0.002 <0.001 0.002 0.008		<0.5 <0.5 <0.5 <0.5 <0.5	8.82 8.49 7.42 8.65 8.17	21 21 9 19 16	420 420 570 430 280	0.8 0.8 0.9 0.8 0.7	4 3 5 <2 <2	4.42 4.26 3.13 4.50 4.45	<0.5 <0.5 <0.5 <0.5 <0.5
TC276699 TC035251 TC035252 TC035253 TC035254	* *	0.70 0.24 0.22 0.50 0.34	0.009 0.001 0.001 0.003 0.002		0.005 <0.005 <0.005 <0.005 <0.005		0.005 0.002 0.002 0.002 <0.001		<0.5 <0.5 <0.5 <0.5 <0.5	7.95 7.34 7.22 7.25 7.14	18 18 14 5	350 480 500 550 580	0.8 0.9 0.9 0.9 0.9	<2 <2 <2 <2 <2 <2	4.31 3.24 3.03 3.10 3.05	<0.5 <0.5 <0.5 <0.5 <0.5
TC035255 TC035256 TC035257 TC035258 TC035259		0.28 0.46 0.40 0.40 0.62	NSS 0.003 0.017 0.004 0.006		NSS <0.005 <0.005 <0.005 <0.005		NSS 0.006 0.006 0.002 0.003		0.5 <0.5 <0.5 <0.5 <0.5	7.59 7.68 7.34 7.91 7.97	22 14 23 15 25	580 740 620 530 520	0.8 0.9 0.8 1.0	<2 <2 <2 <2 <2 <2	3.60 3.98 3.49 3.29 3.32	<0.5 <0.5 <0.5 <0.5 <0.5
TC035260 TC035261 TC035262 TC035263 TC035264		0.54 0.46 0.40 0.50 0.48	0.003 0.020 0.002 0.009 0.016		<0.005 <0.005 0.006 <0.005 <0.005		0.002 0.003 0.002 0.002 0.003		<0.5 <0.5 0.5 <0.5 <0.5	7.38 7.20 7.50 7.61 7.31	20 17 12 <5 12	470 480 510 520 470	0.9 1.0 0.9 0.9 0.9	<2 <2 <2 <2 <2 <2	3.30 3.10 3.24 3.54 3.18	<0.5 <0.5 <0.5 <0.5 <0.5
TC035265 TC035266 TC035267 TC035268 TC035269		0.36 0.44 0.56 0.50 0.50	0.001 0.004 0.002 0.002 0.001		<0.005 <0.005 <0.005 <0.005 <0.005		0.007 0.003 0.001 0.001 0.002		<0.5 <0.5 <0.5 <0.5 <0.5	7.36 7.44 7.60 7.55 7.91	10 23 19 <5 18	520 490 510 450 450	0.9 0.9 0.9 0.9 0.8	<2 <2 <2 <2 <2 <2	3.00 3.28 3.32 3.85 4.00	<0.5 <0.5 <0.5 <0.5 <0.5
TC035270 TC035271 TC035272 TC035273 TC035274		0.50 0.56 0.34 0.50 0.46	0.055 NSS 0.005 0.024 <0.001	NSS	<0.005 NSS <0.005 <0.005 <0.005	NSS	0.001 NSS 0.005 0.064 0.009	NSS	<0.5 <0.5 <0.5 0.5 <0.5	7.47 7.88 7.27 7.07 7.08	8 <5 23 8 22	470 510 420 370 360	0.8 0.8 1.1 0.6 0.7	<2 <2 <2 <2 <2	3.87 3.97 2.43 3.70 3.69	<0.5 <0.5 <0.5 <0.5 <0.5
TC035275 TC035276 TC035277 TC035278 TC035279		0.50 0.54 0.46 0.50 0.44	0.013 0.006 0.006 0.023 0.010	NSS	<0.005 <0.005 <0.005 0.023 <0.005	NSS	0.015 0.011 0.010 0.024 0.011	NSS	<0.5 <0.5 <0.5 <0.5 <0.5	6.26 5.96 6.36 6.22 6.38	22 18 11 32 27	310 280 390 350 370	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	4.66 4.61 3.95 4.36 4.20	<0.5 <0.5 <0.5 <0.5 <0.5
TC035280 TC035281 TC035282 TC035283 TC035284		0.40 0.48 0.44 0.42 0.52	0.004 0.010 0.006 0.004 0.001		<0.005 <0.005 <0.005 <0.005 <0.005		0.002 0.003 0.002 <0.001 0.001		<0.5 <0.5 <0.5 <0.5 <0.5	7.95 8.12 7.88 7.92 7.75	6 6 16 13 8	690 710 680 690 660	1.1 1.1 1.1 1.0 1.1	<2 <2 <2 <2 <2	2.28 2.32 2.49 2.49 2.41	<0.5 <0.5 <0.5 <0.5 <0.5

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALŞ Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - B Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

CERTIFICATE OF ANALYSIS VA06092276

												אלא אל		¥ A000		
Sample Description	Method Analyte Units LOR	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mri ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1
TC276693		34	158	112	7.97	0.88	2.90	1460	1	1.99	59	1080	9	0.07	<5	396
TC276694		31	146	1 12	7.42	0.91	2.91	1215	<1	1.89	56	1250	5	0.05	<5	390
TC276696		17	100	39	5.09	1.02	1.52	2150	<1	1.64	42	900	8	0.12	<5	412
TC276697	1	31	174	94	7.60	0.87	2.92	1275	<1	1.94	55	1070	5	0.08	<5	405
TC276698		27	74	74	6.60	0.44	2.80	1230	1	2.24	37	980	7	0.01	<5	442
TC276699		31	106	99	6.91	0.67	2.81	1195	2	2.02	44	1010	4	0.03	< 5	401
TC035251	- 4	16	106	57	4.46	1.01	1.72	632	2	1.84	39	1020	13	0.05	<5	362
TC035252	- 1	13	102	50	4.04	0.97	1.56	564	1	1,61	39	1050	14	0.08	<5	334
TC035253		17	111	67	4.66	1.11	1.86	724	2	1.56	40	970	15	0.06	<5	323
TC035254		17	133	68	4.85	1.14	1.93	683	2	1.56	43	1000	10	0.07	<5	323
TC035255		22	155	98	5.52	1.22	2.38	961	2	1.64	63	910	24	80.0	<5	373
TC035256		24	146	103	5.58	1.27	2.35	1060	2	1.64	61	830	13	0.08	<5	383
TC035257		23	174	106	5.74	1.13	2.45	911	2	1.57	65	840	19	0.09	<5	334
TC035258		25	155	83	4.92	1.30	2.54	939	1	1.75	58	920	14	0.03	<5	493
TC035259		23	139	83	4.84	1.24	2.52	958	3	1.76	55	930	6	0.03	<5	489
TC035260		20	155	75	4.94	1.10	2.34	862	2	1.69	51	920	10	0.03	<5	434
TC035261		22	127	96	4.64	1.20	2.31	1030	2	1.56	50	1050	10	0.06	<5	412
TC035262	- 1	18	139	79	4.93	1.15	2.27	848	1	1.71	44	990	13	0.05	<5	432
TC035263		19	133	63	5.14	1.17	2.38	837	2	1.85	42	900	12	0.04	<5	452
TC035264		18	129	80	4.66	1.12	2.13	644	2	1.63	45	1060	9	0.06	<5	386
TC035265		16	114	53	4.11	1.14	1.81	738	2	1.87	38	850	10	0.05	<5	405
TC035266		18	134	58	4.66	1.15	2.09	791	3	1.86	41	850	9	0.05	<5	431
TC035267		18	134	53	4.83	1.15	2.12	777	2	1.89	44	840	11	0.04	<5	425
TC035268		20	122	64	5.42	0.93	2.23	960	3	1.72	45	810	8	0.07	<5	421
TC035269		20	139	62	5.62	0.95	2.41	979	2	1.91	45	730	7	0.08	<u><5</u>	448
TC035270		24	160	61	5.84	0.94	2.38	1010	2	1.70	48	750	5	0.16	<5	398
TC035271		23	132	65	5.87	0.98	2.48	1090	1	1.81	50	770	9	0.12	<5	409
TC035272		45	190	216	9.85	0.70	2.46	1975	5	1.53	66	870	11	0.06	<5	241
TC035273		35	306	162	7.01	0.66	4.27	1390	2	1.39	104	750	5 9	0.04	<5 	293
TC035274		42	333	186	7.15	0.73	4.20	1420	4	1.33	121	770		0.07	<5	286
TC035275		61	745	174	7.86	0.39	7.77	1335	4	0.63	249	570	12	0.24	< 5	223
TC035276		53	686	166	7.39	0.43	6.96	1180	3	0.62	226	540	16	0.30	<5 	221
TC035277		51 52	668	140	7.18	0.62	6.55	1095	4	0.77	199	570	17	0.33	<5	224
TC035278		52 53	798	134	7.29	0.47	6.83	1155	3 3	0.71	219	610	14 8	0.45	<5 <5	206
TC035279			737	149	7.29	0.60	6.46	1155		0.73	213	600		0.31		228
TC035280		25	215	98	5.35	1.56	3.37	962	2	1.64	79	940	10	0.05	<5	264
TC035281		24	214	90	5.56	1.55	3.42	973	2	1.67	83	990	12	0.06	<5	265
TC035282		27	239	87	5.49	1.51	3.40	968	2	1.65	85 65	940	10	0.08	<5 -5	274
TC035283 TC035284		22 23	153	77 98	5.19	1.45	2.63	953 986	2 3	1.82	65 84	820	9 8	0.04	<5 <5	300
1 0000204		23	201	90	5.18	1.42	3.17	900	3	1.64	81	900	0	0.06	₹-5	279

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - C Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

							CERTIFICATE OF ANALYSIS VA06092276
	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	S-IR08	
	Analyte	Ti	V	w	Zn	s	
	Units	%	ppm	ppm	ррт	%	
Sample Description	LOR	0.01	1	10	2	0.01	
TC276693	·	0.65	267	<10	110	0.06	
TC276694	j	0.66	238	<10	111	0.05	j
TC276696		0.43	125	<10	120	0.09	
TC276697		0.66	252	<10	109	0.05	
TC276698		0.54	240	<10	79	0.02	
TC276699	. –	0.62	251	<10	100	0.03	
TC035251	,	0.51	1 51	<10	91	0.04	
TC035252	4	0.47	139	<10	98	0.07	
TC035253		0.48	161	10	109	0.06	1
TC035254		0.51	170	<10	97	0.05	
TC035255		0.54	195	<10	134	0.08	
TC035256		0.58	208	<10	138	0.07	
TC035257		0.55	208	<10	132	80.0	
TC035258		0.50	184	<10	97	0.03	
TC035259		0.47	169	<10	101	0.03	
TC035260		0.49	173	<10	95	0.04	
TC035261		0.45	168	<10	99	0.05	
TC035262		0.49	174	<10	97	0.04	
TC035263		0.48	177	<10	91	0.04	
TC035264		0.45	159	<10	92	0.06	
TC035265		0.46	141	10	89	0.06	
TC035266		0.49	164	<10	93	0.05	
TC035267		0.52	165	<10	95	0.03	
TC035268		0.47	176	<10	94	0.08	
TC035269		0.48	183	<10	91	0.07	
TC035270		0.52	197	<10	96	0.15	
TC035271 TC035272		0.47	189	<10	98	0.12 0.05	
TC035272		0.44 0.40	287 234	<10 <10	113 86	NSS	
TC035273		0.43	234	<10	95	0.07	
TC035275			236	<10	98	0.24	
TC035275		0.29 0.29	236 228	<10	96 97	0.39	
TC035277		0.23	229	<10	97	0.39	
TC035277		0.33	232	<10	90	0.50	
TC035279		0.34	233	<10	100	0.33	
TC035280		0.44	188	<10	130	0.06	
TC035281		0.44	190	<10	133	0.06	
TC035282		0.45	194	<10	129	0.07	
TC035283		0.48	183	<10	123	0.04	· · · · · · · · · · · · · · · · · · ·
TC035284		0.43	175	<10	125	0.06	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 4 - A Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

CERTIFICATE OF ANALYSIS VA06092276

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0,001	PGM-ICP23 Au Check ppm 0.001	PGM-ICP23 Pt ppm 0,005	PGM-ICP23 Pt Check ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP23 Pd Check ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5
				0.001		0.005		U.001								
TC035285	- 1	0.40	0.008		<0.005		0.001		<0.5	7.60	16	640	1.0	<2	2.35	<0.5
TC035286		0.44	0.003		<0.005		0.003		<0.5	7.46	11	630	1.0	<2	2.31	<0.5
TC035462	- 1	0.54	0.017	NSS	<0.005	NSS	0.003	NSS	<0.5	6.64	<5	510	0.9	<2	2.25	<0.5
TC035463		0.52	<0.001		<0.005		<0.001		<0.5	8.00	17	660	1.2	<2	2.25	<0.5
TC035464		0.28	0.003		<0.005		<0.001		<0.5	7.84	14	440	0.9	<2	1.85	<0.5
TC035465	1	0.48	0.016		<0.005		0.007		<0.5	7.36	6	460	0.9	<2	1.98	<0.5
TC035466	3 ,	0.54	NSS		NSS		NSS		<0.5	8.14	35	400	0.7	<2	1.60	<0.5
TC035467	` '	0.40	0.001		< 0.005		<0.001		<0.5	7.90	43	420	0.8	<2	1.99	<0.5
TC035468		0.50	0.005		<0.005		<0.001		<0.5	8.25	14	480	0.8	<2	1.84	<0.5
TC035469		0.46	0.004		<0.005		0.002		<0.5	7.73	28	390	0.7	<2	2.46	<0.5
TC035470		0.52	0.003		< 0.005		0.001		<0.5	8.32	36	350	0.8	<2	1.48	<0.5
TC035471		0.46	0.005		< 0.005		0.001		<0.5	8.56	25	430	8.0	<2	2.32	<0.5
TC035472		0.44	0.011		<0.005		0.004		<0.5	8.28	19	540	8.0	2	4.10	<0.5
TC035473		0.48	0.018		<0.005		0.005		<0.5	7.37	11	950	0.7	<2	4.11	<0.5
TC035474		0.46	0.013		<0.005		0.007		<0.5	8.30	18	640	8.0	<2	4.11	<0.5
TC035475		0.42	0.105		<0.005		0.001	•	<0.5	7.73	15	1100	0.7	<2	4.23	<0.5
TC035476		0.54	0.006		0.010		0.004		<0.5	8.00	19	690	0.8	<2	4.16	<0.5
TC035477		0.42	0.001		0.006		0.003		<0.5	6.90	<5	480	0.7	<2	2.68	<0.5
TC035478		0.54	0.033		0.010		0.003		<0.5	6.17	21	710	0.7	5	3.61	0.9
TC035479		0.80	0.005		0.006		0.003		<0.5	8.08	9	590	1.0	<2	2.84	<0.5
TC035480		0.60	0.003		<0.005		0.002		<0.5	7.89	<5	550	1.0	<2	3.20	<0.5
TC035481		0.52	0.008		0.007		0.002		<0.5	8.00	5	530	1.0	<2	3.48	<0.5
TC035482		0.62	0.058		0.010		0.001		<0.5	7.85	<5	540	0.9	<2	3.71	<0.5
TC035483		0.48	< 0.001		<0.005		0.004		<0.5	8.20	10	450	8.0	<2	3.22	<0.5
TC035484		0.58	0.026		0.009		0.003		<0.5	7.73	5	480	8.0	<2	3.39	<0.5
TC035485		0.54	0.001		< 0.005	<u> </u>	0.003		<0.5	8.27	<5	530	0.9	<2	3.47	<0.5
TC035486		0.78	0.006		0.022		0.021		<0.5	7.56	5	360	0.7	2	5.16	<0.5
TC035487		0.66	< 0.001		0.009		< 0.001		<0.5	7.79	15	380	0.7	3	4.35	<0.5
TC035488		0.44	0.107		< 0.005		0.004		<0.5	7.98	11	540	0.8	<2	4.18	<0.5
TC035489		0.42	0.039		0.005		0.003		<0.5	8.29	13	590	0.8	<2	4.09	<0.5
TC035490		0.22	0.009		0.008		0.007		<0.5	8.47	13	590	0.8	<2	4.14	<0.5
TC035491		0.56	0.007		<0.005		0.003		<0.5	8.31	22	670	8.0	<2	4.43	<0.5
TC035492		0.54	0.232		0.006		0.005		<0.5	7.65	13	590	0.7	<2	4.20	<0.5
TC035493		0.50	0.015		<0.005		0.004		<0.5	8.13	17	490	8.0	3	4.18	<0.5
TC035494		0.44	0.008		<0.005		0.004		<0.5	8.36	13	530	0.9	<2	4.17	<0.5
TC035495		0.56	0.013		0.006		0.005		<0.5	8.57	19	500	8.0	<2	4.20	<0.5
TC035496		0.56	0.018		0.017		0.003		<0.5	8.58	21	640	1.0	2	4.08	<0.5
TC035497		0.44	0.002		0.021		0.003		<0.5	7.61	<5	460	1.0	<2	3.09	<0.5
TC035498		0.80	0.001		< 0.005		0.003		<0.5	7.65	8	440	1.0	<2	3.47	<0.5
TC035499		0.40	0.003		<0.005		0.004		<0.5	7.80	9	490	1.0	<2	2.88	<0.5

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 4 - B Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

	·	
CERTIFICATE O	DIDA IVINY	いんのたののつつフた
CLIVIII ICALL O	MINALIOIO	VAUUUJZZIU

	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sr
	Units	ppm	ppm	ppm	%	%	%	ppm	. ppm	%	ppm	p pm	ppm	%	ppm	ppm
Sample Description	LOR	1	1	1	0.01	0.01	0.01	5	1	0.01	1	10	2	0.01	5	1
TC035285		25	199	88	5.18	1.44	3.20	954	3	1.61	81	910	11	0.05	<5	253
TC035286		24	220	94	5.17	1.43	3.18	941	2	1.53	80	880	14	0.06	<5	256
TC035462		13	73	53	3.91	1.10	1.23	798	1	1.36	36	1370	9	0.11	<5	254
TC035463		17	82	60	4.71	1.41	1.27	856	2	1,72	35	1120	8	0.06	<5	295
TC035464		18	70	51	4.75	1.32	0.96	788	2	1.43	27	780	10	0.07	<5	258
TC035465	•	12	63	50	4.21	1.26	1.00	631	2	1.39	27	940	8	80.0	<5	248
TC035466	3	18	60	67	5.53	1.74	0.82	918	4	1.13	30	670	15	0.20	<5	177
TC035467	*	18	67	59	5.32	1.42	0.99	901	3	1.35	30	780	14	0.11	<5	251
TC035468		17	59	66	5.31	1.59	0.95	1010	3	1.34	25	740	11	0.13	<5	261
TC035469		15	53	65	4.65	1.54	0.93	828	3	1.14	26	720	16	0.17	<5	240
TC035470		20	79	88	5.53	1.52	1.25	733	3	1.31	35	580	14	0.05	<5	211
TC035471		19	60	74	5.07	1.65	1.07	729	1	1.22	28	650	10	0.29	5	258
TC035472		28	140	117	6.36	1.14	2.79	1115	<1	1.91	50	930	9	0.10	<5	418
TC035473		29	207	125	11.05	1.05	2.67	1235	<1	1.62	53	890	8	0.27	<5	370
TC035474		27	162	133	6.78	1.17	2.73	1195	<1	1.85	54	1020	6	0.14	<5	399
TC035475		31	246	119	11.30	1.06	2.79	1260	<1	1.71	57	1040	9	0.27	<5	382
TC035476		26	161	119	7.02	1.17	2.64	1140	<1	1.82	50	920	6	0.15	<5	399
TC035477		17	90	29	4.42	0.84	1.72	769	<1	1.81	35	1130	7	0.12	<5	374
TC035478		5 5	75	31	9.05	0.61	1.75	11450	<1	1.51	54	1140	4	0.08	<5	507
TC035479		22	158	107	5.19	0.95	2.15	1130	<1	1.93	56	750	8	0.02	<5	361
TC035480		18	117	39	4.39	1.09	1.74	704	<1	2.01	39	980	8	0.03	<5	386
TC035481		23	178	65	5.32	1.00	2.29	1240	<1	1.93	56	910	5	0.04	<5	407
TC035482	i	25	181	71	5.98	0.98	2.37	1275	<1	1.83	55	930	6	0.09	<5	392
TC035483		24	163	64	5.25	0.90	2.79	1015	<1	1.98	59	660	5	0.03	<5	388
TC035484		25	170	72	5.28	0.92	2.62	1105	<1	1.80	64	800	4	0.04	<5	372
TC035485		23	127	63	5.03	1.03	2.35	1105	<1	2.06	50	800	6	0.04	<5	420
TC035486		38	213	154	7.32	0.67	3.62	1465	<1	1.61	76	710	6	0.11	<5	326
TC035487		31	170	101	6.62	0.76	3.16	1205	<1	1.68	62	730	6	0.07	<5	365
TC035488		29	157	115	7.40	1.13	2.73	1130	<1	1.80	52	950	4	0.19	<5	400
TC035489		28	126	112	6.49	1.15	2.74	1120	<1	1.87	49	970	9	0.13	<5	410
TC035490		27	120	131	6.21	1.16	2,71	1170	<1	1.87	52	1000	5	0.13	<5	417
TC035491		29	154	112	7.37	1.18	2.83	1180	<1	1.88	52	990	9	0.20	<5	425
TC035492		30	211	127	10.30	1.00	2.75	1195	<1	1.71	52	960	5	0.22	<5	390
TC035493		26	141	121	6.52	1,11	2.75	1095	<1	1.92	51	970	5	0.13	<5	423
TC035494		29	124	127	6.16	1.21	2.64	1125	<1	1.83	48	990	6	0.12	6	417
TC035495		28	131	137	6.34	1.19	2.73	1145	<1	1.89	52	980	7	0.14	8	430
TC035496		27	109	132	5.53	1.30	2.62	1065	<1	1.79	47	970	6	0.12	<5	480
TC035497		20	91	94	4.33	1.07	1.82	854	<1	1.68	40	1120	19	0.08	<5	411
TC035498		20	126	92	4.71	1.01	2.04	792	<1	1.64	46	1050	14	0.06	7	391
TC035499		19	108	66	4.42	1.00	1.82	813	<1	1.70	44	1010	9	0.06	<5	401

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 4 - C Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

CERTIFICATE	OF ANALYSIS	VA06092276

	_						
		ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	S-IR08	
	Method	ME-ICPOI	ME-ICPOT				
	Analyte Units	%		W	Zn	\$ %	
Sample Description	LOR	0.01	ррт	ppm 40	ppm	% 0.01	
Campio according		0.01	1	10	2	0.01	
TC035285		0.43	180	<10	124	0.06	
TC035286		0.43	182	<10	123	0.06	
TC035462		0.38	118	<10	100	0.10	
TC035463		0.45	148	10	101	0.05	
TC035464		0.48	152	<10	111	0.07	
TC035465	-	0.38	132	<10	107	0.08	
TC035466	1	0.42	155	<10	98	0.00	
TC035467	1 1	0.42	154	<10	110	0.13	
TC035468	`	0.45	156	<10	103	0.15	
TC035469		0.45	139	<10	110	0.15	
TC035470		0.47	184	<10	104	0.05	
TC035471		0.49	161	<10	104	0.33	
TC035472		0.50	249	<10	105	0.11	
TC035473		0.61	493	<10	122	0.27	
TC035474		0.54	262	<10	120	0.12	
TC035475		0.64	491	<10	120	0.23	
TC035476		0.53	285	<10	109	0.18	
TC035477		0.43	113	<10	126	0.09	
TC035478		0.36	117	<10	230	0.06	
TC035479		0.50	168	<10	116	0.03	
TC035480		0.61	151	<10	115	0.04	
TC035481		0.58	177	<10	140	0.03	
TC035482		0.61	203	<10	136	0.08	
TC035483		0.46	170	<10	105	0.03	
TC035484		0.49	173	<10	113	0.03	
TC035485		0.49	165	<10	103	0.04	
TC035486		0.51	242	<10	113	0.08	
TC035487		0.52	229	<10	112	0.08	
TC035488		0.54	306	<10	117	0.17	
TC035489		0.49	252	<10	110	0.14	
TC035490		0.49	230	<10	111	0.14	
TC035490 TC035491		0.49	230 304	<10	1113	0.14	
TC035491 TC035492		0.55	304 433	<10	113	0.20	
TC035492 TC035493		0.50	258	<10	105	0.24	
TC035494		0.30	235	10	112	0.11	
TC035495		0.49	239	<10	108	0.11	
TC035496		0.50	205	<10	147	0.12	
TC035497		0.45	139	<10	112	0.07	
TC035498		0.48	161	<10	105	0.06	
TC035499		0.50	148	<10	110	0.05	
		·					

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 5 - A Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

CERTIFICATE OF ANALYSIS VA06092276

											CAIL	/ ///		VACCO.		
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Au Check ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pt Check ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP23 Pd Check ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5
TC035500 TC035601 TC035602 TC035603		0.48 0.46 0.62 0.48	0.001 0.193 0.003 0.278		0.007 0.006 0.005 0.005		0.001 0.003 0.003 0.003		<0.5 <0.5 <0.5 <0.5	7.52 7.76 7.84 7.74	5 <5 6 10	470 520 420 390	1.0 0.9 0.8 0.7	<2 <2 <2 <2	3.12 3.41 3.85 3.93	<0.5 <0.5 <0.5 <0.5
TC035604 TC035605 TC035606	*	0.48 0.44 0.42 0.56	0.011 0.007 0.002 0.001	<u>.</u>	0.006 <0.005 0.008 0.010		0.004 0.002 0.003 0.005	. <u></u>	<0.5 <0.5 <0.5 <0.5	7.88 8.13 7.88 8.33	15 <5 8 20	530 410 360	0.8 0.9 0.8 0.7	<2 <2 <2 <2	3.97 3.27 3.88 4.69	<0.5 <0.5 <0.5 <0.5
TC035607 TC035608 TC035609		0.56 0.78 0.54	0.001 0.005 0.005 0.002		0.009 <0.005		0.005 0.006 0.002		<0.5 <0.5 <0.5	8.94 7.69 8.27	26 8 15	900 1010 690	0.7 0.7 0.9	<2 <2 <2 <2	2.92 1.48 2.05	1.0 <0.5 <0.5
TC035611 TC035612 TC035613 TC035614		0.78 0.60 0.54 0.68	0.031 0.004 0.002 0.002		0.007 <0.005 0.007 <0.005		0.003 0.001 0.003 0.004		<0.5 <0.5 0.7 <0.5	8.67 8.60 8.81 8.51	19 27 24 26	750 710 580 660	0.7 0.8 0.7 0.7	<2 <2 <2 <2	2.85 3.10 2.10 3.24	0.9 0.9 0.8 0.7
TC035615 TC035616 TC035617 TC035618		0.40 0.74 0.50 0.62	0.013 0.011 0.008 0.007		0.009 0.009 0.009 0.005		0.004 0.001 0.002 0.003		<0.5 <0.5 <0.5 <0.5	8.38 9.09 9.11 8.81	17 20 19 11	430 560 530 530	0.8 0.8 0.9 0.8	<2 <2 <2 <2 <2	2.06 3.77 3.77 4.23	1.0 0.9 0.6 0.7
TC035619 TC035620 TC035621		0.60 0.58 0.58	0.004 0.011 0.011		0.005 <0.005 <0.005		0.003 0.005 0.004		<0.5 <0.5 <0.5	9.04 8.68 8.55	<5 15 13	570 600 640	0.8 0.9 0.9	<2 <2 <2	3.80 3.85	0.6 0.5
TC035622 TC035623 TC035624 TC035625		0.60 0.68 0.62 0.64	0.006 0.012 0.009		0.015 <0.005 0.008 <0.005		0.032 0.004 0.002 0.006		<0.5 <0.5 <0.5	8.85 8.15 8.60 8.61	16 7 13	600 620 520	0.9 0.9 1.1	<2 <2 <2 <2	2.82 3.96 3.09	<0.5 <0.5 0.6
TC035626 TC035627 TC035628 TC035629	;	0.62 0.62 0.50 0.56	0.006 0.008 0.011 0.013		<0.005 0.007 <0.005 <0.005		0.004 0.008 0.001 0.004		<0.5 <0.5 <0.5 <0.5	8.31 8.68 8.34 8.29	21 17 14 13	600 600 540 620	0.9 1.0 1.0 0.9	<2 <2 <2 <2	3.90 4.15 3.11 4.17	0.5 0.6 <0.5 <0.5
TC035630 TC035631 TC035632 TC035663	·· -	0.70 0.56 0.60 0.52	0.008 0.011 0.015 0.033		<0.005 0.006 0.007 0.010		0.004 0.004 0.004 0.013		0.6 <0.5 <0.5 <0.5	8.62 8.38 8.14 7.39	17 17 12 45	650 630 600 650	0.9 0.9 0.9 0.5	<2 <2 <2 <2	4.26 4.07 4.06 3.85	0.6 0.5 <0.5 0.5
TC035664 TC035665 TC035666 TC035667		0.44 0.46 0.56 0.48	0.002 0.003 0.003 0.001		<0.005 0.011 <0.005 <0.005	_	0.007 0.008 0.007 0.004		<0.5 <0.5 <0.5 <0.5	7.58 8.08 7.79 7.79	18 <5 10 11	750 470 680 600	0.6 0.7 0.7 0.7	<2 <2 <2 <2	3.27 3.79 3.26 3.01	<0.5 <0.5 0.5 <0.5
TC035668 TC035669		0.40 0.46	0.003 0.008		0.009 <0.005		0.005 0.005		<0.5 <0.5	7.49 7.72	17 12	800 690	0.9	<2 <2	5.26 3.87	<0.5 <0.5

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 5 - B Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

CERTIFICATE OF ANALYSIS VA06092276

						_					CAIL	, A17		VAUCU.	<u>JEE 1 U</u>	
Sample Description	Method Analyte Units LOR	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1
TC035500 TC035601		18 19	 114 119	62 68	4.51 5.56	1.00 0.94	1.83 1.96	713 885	<1 <1	1.67 1.98	41 42	1030 880	11 7	0.07 0.04	 <5 <5	393 417
TC035602		26	141	69	5.97	0.88	2.65	931	<1	1.78	49	950	5	0.03	<5	411
TC035603		28	139	86	6.68	0.75	2.71	1115	<1	1,80	47	990	4	0.04	<5	383
TC035604		29	113	91	6.47	0.71	2.82	1185	<1	1.87	47	930	3	0.04	<5	396
TC035605		18	129	31	4.19	1.10	1.72	815	<1	2,27	35	740	7	0.03	<5	455
TC035606	\$	24	125	68	5.94	0.83	2.47	986	<1	1.94	45	890	4	0.04	<5	416
TC035607	1	28	113	82	7.29	0.69	3.09	1315	<1	2.01	47	840	10	0.03	6	396
TC035608	1	22	146	83	5.82	1.59	2.11	801	<1	1.07	66	660	19	0.36	<5	275
TC035609		15	72	107	4.02	2.47	1.36	840	1	1.21	30	620	15	0.10	<5	169
TC035610		16	71	76	5.00	1.69	1.60	892	<1	1.77	30	850	12	0.15	< 5	261
TC035611		24	146	80	5.59	1.55	2.17	845	1	1.27	61	670	12	0.28	<5	271
TC035612		30	150	88	6.08	1.59	2.22	1050	2	1.19	66	650	19	0.18	<5	243
TC035613		18	82	91	5.70	1.62	1.55	883	1	1.17	43	810	17	0.22	<5	263
TC035614		22	147	75	5.66	1.63	2.12	875	1	1.26	56	570	16	0.30	. <5	244
TC035615		18	67	105	5.54	1.47	1.46	780	2	1.03	33	1000	27	0.27	<5	308
TC035616		21	116	71	5.67	1.66	1.98	958	<1	1.40	44	670	14	0.23	<5	282
TC035617		22	113	76	5.64	1.69	2.01	980	<1	1.46	43	770	17	0.23	5	284
TC035618 TC035619		21 24	125 125	98 83	5.90 5.93	1.52 1.58	2.31 2.34	1060 1145	<1 <1	1.40 1.52	53 54	650 640	12 11	0.15 0.15	<5 7	300 297
TC035620		24	169	101	5.98	1.59	2.53	1220	<1	1.61	74 70	630	18	0.17	<5 -5	333
TC035621 TC035622		23 19	164 136	104 64	5.88 5.51	1.53 1.65	2.50 2.00	1190 967	<1 <1	1.62 1.62	70 54	630 62 0	18 14	0.19 0.18	<5 <5	329 294
TC035623		27	156	88	5.61	1.49	2.00	1155	<1	1.56	66	640	17	0.16	<5	328
TC035624		19	140	78	5.31	2.06	2.01	1180	<1	1.43	64	710	17	0.38	<5	200
TC035625		22	155	73	5.66	1.66	2,34	1085	<1	1.60	63	660	24	0.24	<5	301
TC035626		24	141	80	5.53	1.55	2.38	1145	<1	1.63	64	650	17	0.21	<5	326
TC035627		25	150	86	5.70	1.69	2.48	1165	<1	1.68	71	700	12	0.23	<5	337
TC035628		19	109	49	4.97	1.28	1.87	890	<1	2.10	40	750	12	0.03	<5	432
TC035629		21	162	80	5.52	1.56	2.40	1110	<1	1.62	65	680	19	0.24	<5	326
TC035630		24	156	81	5.69	1.62	2.49	1170	<1	1.69	65	720	16	0.23	<5	336
TC035631		22	163	76	5.55	1.59	2.38	1120	<1	1.66	62	710	28	0.26	<5	317
TC035632		21	140	75	5.33	1.51	2.33	1070	<1	1.63	59	670	11	0.20	7	317
TC035663		55	319	127	8.16	0.86	4.54	1115	<1	1.19	169	730	8	3.29	<5	219
TC035664		43	379	105	6.51	1.03	4.31	1150	<1	1.34	158	720	6	1.11	<5	261
TC035665		31	219	109	6.40	1.00	3.87	1205	<1	1.52	87	640	3	0.10	<5	308
TC035666		34	272	102	6.01	1.14	3.46	1055	<1	1.65	105	690	8	0.74	<5	292
TC035667		30	215	100	5.59	1.26	2.94	1005	<1	1.82	81	680	8	0.45	<5	282
TC035668		27 28	234	95	5.65 5.74	1.29	3.55	896	<1 -1	1.24	93	940	13	0.55	<5	243
TC035669		_ ∠ō	221	88	5.74	1.23	3.11	980	<1	1.63	83	740	9	0.57	9	290

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 5 - C Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

							CERTIFICATE OF ANALYSIS VA06092276
	Method Analyte	ME-ICP61 Ti	ME-ICP61	ME-ICP61	ME-ICP61 Zn	S-IR08 S	
Sample Description	Units LOR	% 0.01	ppm 1	ppm 10	ppm 2	% 0.01	
TC035500		0.52	152	<10	121	0.07	
TC035601		0.61	198	<10	129	0.04	1
TC035602		0.58	198	<10	121	0.03	ĺ
TC035603		0.62	225	<10	107	0.03	
TC035604		0.56	218	<10	108	0.03	
TC035605		0.65	143	<10	89	0.03	
TC035606	*	0.59	197	<10	102	0.04	
TC035607		0.57	246	<10	106	0.02	
TC035608		0.47	175	<10	158	0.35	}
TC035609		0.34	104	10	89	80.0	
TC035610		0.39	130	<10	115	0,13	
TC035611		0.45	170	<10	149	0.25	
TC035612		0.43	171	<10	156	0.16	
TC035613		0.46	159	<10	128	0.16	
TC035614		0.47	177	<10	148	0.30	J
TC035615		0.40	151	<10	199	0.28	
TC035616		0.49	179	10	128	0.21	
TC035617		0.48	175	<10	129	0.18	
TC035618		0.50	186	<10	139	0.14	
TC035619		0.53	191	10	135	0.11	l de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
TC035620	-	0.50	193	<10	180	0.16	
TC035621		0.50	193	<10	167	0.17	
TC035622		0.50	169	10	118	0.14	
TC035623		0.48	185	<10	160	0.13	
TC035624		0.41	157	<10	193	0.34	
TC035625		0.51	185	<10	161	0.18	
TC035626		0.47	178	<10	164	0.19	
TC035627		0.50	188	10	169	0.20	
TC035628		0.57	171	<10	106	0.03	
TC035629		0.48	180	<10	147	0.23	
TC035630		0.48	182	<10	160	0.21	
TC035631		0.49	182	<10	149	0.25	
TC035632		0.46	173	10	139	0.18	
TC035663		0.38	264	<10	83	3.57	
TC035664		0.38	215	10	118	0.98	
TC035665		0.42	229	<10	104	0.09	
TC035666		0.38	196	<10	108	0.65	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
TC035667		0.38	188	<10	101	0.48	
TC035668		0.39	196	<10	121	0.56	
TC035669		0.39	187	<10	107	0.55	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 6 - A Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

CERTIFICATE OF ANALYSIS	VA06092276
CEIVIII ICATE OF ANALTOIS	Y MUUUUULLI U

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Au Check ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pt Check ppm 0.005	PGM-ICP23 Pd ppm 0.001	PGM-ICP23 Pd Check ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5
TC035670 TC035671 TC035672 TC035673 TC035674		0.42 0.40 0.46 0.58 0.54	0.004 0.004 0.003 0.007 0.007		<0.005 0.007 <0.005 <0.005 <0.005		0.005 0.004 0.003 0.003 0.002		<0.5 <0.5 <0.5 <0.5 <0.5	7.84 8.11 8.25 7.86 7.95	19 20 8 8 21	710 660 760 740 730	0.9 0.8 0.9 1.0 1.1	<2 <2 <2 <2 <2 <2	3.59 3.64 3.41 3.37 3.59	<0.5 0.5 <0.5 <0.5 <0.5
TC035675 TC035676 TC035677 TC035678 TC035679	*	0.62 0.68 0.60 0.72 0.70	0.002 0.006 0.006 0.004 0.004		0.013 <0.005 <0.005 <0.005 <0.005		0.019 0.004 0.004 0.004 0.003		<0.5 0.8 <0.5 <0.5 <0.5	8.33 7.92 8.36 8.22 8.29	24 19 30 71 26	510 710 730 680 730	0.9 1.0 1.1 0.9 1.0	<2 <2 <2 <2 <2 <2	2.54 3.52 3.21 4.23 3.84	<0.5 <0.5 <0.5 <0.5 <0.5
TC035680 TC035681 TC035682 TC035683 TC035684		0.26 0.68 0.68 0.68 0.82	0.003 0.003 0.003 0.005 0.005		<0.005 <0.005 <0.005 <0.005 <0.005		0.002 0.003 0.002 0.002 0.002		<0.5 <0.5 <0.5 0.5 <0.5	7.95 8.03 7.80 7.88 7.83	38 91 56 49 22	710 700 680 660 660	1.0 0.9 0.9 1.0 0.9	<2 <2 <2 <2 <2 <2	4.28 4.33 4.06 3.92 3.31	<0.5 <0.5 <0.5 <0.5 <0.5
TC035685		0.70	0.005		<0.005		0.002		<0.5	7.92	66	640	0.9	<2	4.01	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 6 - B Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

	Method Analyte Units									ERTIF	CATE C	F ANA	YSIS	VA060	92276	
Sample Description	Analyte	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1
TC035670		28	205	105	5.56	1.36	3.12	1050	<1	1.59	82	830	10	0.29	<5	266
TC035671	1	25	176	93	5.64	1.33	3.08	1055	<1	1.67	78	840	11	0.29	<5	273
TC035672		27	179	86	5.63	1.44	2.98	1055	<1	1.78	66	830	10	0.27	<5	280
TC035673		26	156	88	5.12	1.47	2.87	1035	1	1.70	73	900	6	0.23	<5	268
TC035674		29	155	107	5.34	1.49	2.91	1080	2	1.62	77	990	10	0.21	<5	271
TC035675	•	21	87	94	5.24	1.47	1.76	862	2	1.45	37	820	16	0.14	<5	263
TC035676	· * .	24	150	92	5.18	1.42	2.86	1040	1	1.66	75	940	8	0.23	<5	271
TC035677	•	25	114	93	5.38	1.65	2.65	1080	1	1.79	61	970	12	0.08	<5	263
TC035678	- 1	26	147	99	5.84	1.47	2.89	1120	1	1.74	75	940	7	0.34	<5	280
TC035679		24	138	89	5.32	1.54	2.85	1075	1	1.80	68	930	. 9	0.22	<5	283
TC035680		23	122	97	5.19	1.50	2.60	1045	2	1.63	65	930	8	0.16	<5	311
TC035681	1	23	114	87	5.52	1.53	2.48	1055	1	1.57	58	790	7	0.23	<5	258
TC035682	ľ	22	117	79	5.19	1.48	2.48	1015	1	1.60	57	800	6	0.27	<5	263
TC035683		23	128	87	5.20	1.46	2.54	1030	2	1.69	63	880	8	0.23	<5	277
TC035684		22	119	73	4.94	1.43	2.48	1000	1	1.80	55	840	6	0.10	<5	262
TC035685		23	105	82	5.16	1.54	2.41	1025	1	1.64	56	780	10	0.17	<5	262

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 6 - C Total # Pages: 6 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 ANT

							CERTIFICATE OF ANALYSIS VA06092276
Sample Description	Method Analyte Units LOR	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	S-1R08 S % 0.01	
TC035670 TC035671		0.40 0.40	190 185	<10 <10	121 116	0.27 0.31	
TC035672 TC035673		0.41 0.42	190 183	<10 <10	121 118	0.23 0.22	
TC035674		0.45	191	<10	133	0.19	
TC035675 TC035676 TC035677 TC035678 TC035679	*	0.45 0.42 0.46 0.45 0.43	159 180 192 192 183	<10 <10 <10 <10 <10	135 120 133 133 124	0.12 0.20 0.07 0.26 0.19	
TC035680 TC035681 TC035682 TC035683 TC035684		0.44 0.41 0.41 0.43 0.43	180 168 169 177 177	<10 <10 <10 <10 <10	125 114 109 115 104	0.15 0.20 0.26 0.19 0.09	
TC035685		0.41	166	<10	110	0.15	
	į						

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 11-OCT-2006

Account: UZJ

CERTIFICATE VA06095042

Project: 506 (ONION)

P.O. No.:

This report is for 10 Stream Sediment samples submitted to our lab in Vancouver, BC, Canada on 5-SEP-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	

	ANALYTICAL PROCEDUF	RES
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO
ME-ICP61	27 element four acid ICP-AES	ICP-AES

To: FALCONBRIDGE LTD - LAVAL EXPLORATION
ATTN: RICHARD NIEMINEN
3296, AVE FRANCIS-HUGHES
LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

CERTIFICATE OF ANALYSIS VA06095042

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 11-OCT-2006

Account: UZJ

Project: 506 (ONION)

		WEL 24														
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1
C035295		0.42	0.005	0.028	0.028	<0.5	2.73	6	160	<0.5	<2	2.45	<0.5	90	2060	118
C035296		0.42	0.004	0.059	0.084	<0.5	2.48	<5	120	<0.5	<2	1.46	<0.5	125	3440	148
C035297		0.56	0.004	0.052	0.058	<0.5	1.62	<5	80	<0.5	<2	1.23	<0.5	136	4320	137
C035298		0.50	0.002	0.097	0.082	<0.5	1.48	<5	60	<0.5	<2	1.23	<0.5	148	4750	133
C035299		0.62	0.016	0.076	0.087	<0.5	1.50	21	60	<0.5	<2	1.05	<0.5	139	4450	124
C035300	•	0.50	0.014	0.092	0.079	<0.5	2.57	29	140	<0.5	<2	1.36	<0.5	116	4570	157
C035351	.5	0.42	0.005	0.038	0.050	<0.5	2.75	<5	220	<0.5	<2	1.74	<0.5	95	3630	208
C035352	*	0.62	0.011	0.033	0.034	0.6	4.99	15	520	0.7	<2	2.17	<0.5	63	2700	467
C035353		0.50	0.014	0.012	0.014	0.5	6.47	<5	670	1.1	<2	3.05	<0.5	45	1050	747
C035354		0.48	0.038	0.013	0.015	<0.5	5.75	<5	580	0.9	<2	2.51	<0.5	36	1140	490

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

CERTIFICATE OF ANALYSIS VA06095042

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 11-OCT-2006

Account: UZJ

Project: 506 (ONION)

Sample Description	Method Analyte Units LOR	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn Ppm	ME-ICP61 Mo ppm	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm	ME-ICP61 Sc ppm	ME-ICP61 Sr ppm
C035295	· · · · · · · · · · · · · · · · · · ·	7.70	10	0.27	<10	14.65	1280	<1	0.51	1245	310		0.05		13	101
C035295	Į.	8.96	<10	0.27	<10	16.85	1280	<1	0.40	1655	210	ა ი	0.03	< 5	12	101 74
C035290 C035297	i	9.81	<10	0.15	10	18.70	1330	<1	0.40	1900	170	<2	0.03	-5 -5	0	53
C035297	1	10.35	<10	0.13					0.23		150	~2		•	9	
					10	19.45	1345	<1		2020		2	0.04	<5	9	47
C035299	1	9.64	<10	0.14	10	18.05	1245	<1	0.21	1910	150	<2	0.05	<5	8	49
C035300		9.43	<10	0.35	<10	14.20	1135	1	0.34	1570	240	14	0.35	9	11	100
C035351		8.63	10	0.30	<10	14.70	1145	1	0.41	1490	270	11	0.20	11	13	122
C035352	4	7.98	10	0.69	10	9.06	1155	16	0.99	886	700	13	0.25	8	16	232
C035353	- 1	6.75	10	1.16	20	5.49	1150	26	1.22	485	940	14	0.19	10	16	355
C035354		5.58	10	1.02	10	5.09	991	18	1.23	433	850	13	0.16	6	14	301

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 11-OCT-2006

Account: UZJ

Project: 506 (ONION)

CERTIFICATE		A	VA06095042
1.FD	7 1	ARIAI VCIC	VANIGHUENA'S
		MINE LAND	V MUTHUT: HUM/

										CERTIFICATE OF ANALTSIS	VA00093042
Sample Description	Method Analyte Units LOR	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W Ppm 10	ME-ICP61 Zn ppm 2	S-IR08 S % 0.01		
C035295 C035296 C035297 C035298 C035299	i	<20 <20 <20 <20 <20	0.16 0.14 0.11 0.10 0.10	<10 <10 <10 <10 10	<10 <10 <10 <10 <10	84 91 71 70 68	<10 <10 <10 <10 10	84 88 98 100 94	0.04 0.04 0.03 0.03 0.04		
C035300 C035351 C035352 C035353 C035354	1	<20 <20 <20 <20 <20	0.16 0.16 0.26 0.28 0.26	20 <10 10 10 10	<10 10 10 <10 <10	100 103 135 136 119	10 <10 <10 <10 <10	108 100 122 95 86	0.33 0,22 0.26 0.17 0.16		
		-									
	į										
	3										
			_					<u>.</u>			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 10-OCT-2006

Account: UZJ

CERTIFICATE VA06095043

Project: 505 (006) B.L.

P.O. No.:

This report is for 4 Stream Sediment samples submitted to our lab in Vancouver, BC, Canada on 26-SEP-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

1

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight	<u> </u>						
LOG-22	Sample login - Rcd w/o BarCode							
SCR-41	Screen to -180um and save both							

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO
ME-ICP61	27 element four acid ICP-AES	ICP-AES

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.aischemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 10-OCT-2006

Account: UZJ

Project: 505 (006) B.L.

	•								(ERTIFI	CATE (F ANA	LYSIS	VA0609	95043	
iample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1
C035287 C035288 C035289 C035290		0.58 1.16 0.32 0.32	0.003 0.009 0.005 0.001	0.006 <0.005 0.007 0.008	0.004 0.004 0.008 0.007	0.5 <0.5 <0.5 <0.5	7.69 7.90 7.20 7.61	<5 5 5 <5	570 660 510 490	0.5 0.5 0.5 0.5	<2 <2 2 <2	5.43 5.92 5.10 5.58	<0.5 <0.5 <0.5 <0.5	42 39 42 39	422 522 451 449	99 87 93 88

						·										

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 10-OCT-2006

Account: UZJ

Project: 505 (006) B.L.

											ERTIFI	CATE C	F ANAI	YSIS	VA060	95043	
Sample Description	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	
	Analyte	Fe	Ga	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr	
	Units	%	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	
	LOR	0.01	10	0.01	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	
C035287	-	7.22	10	0.70	<10	5.16	1210	<1	1.59	196	660	10	0.06	5	31	270	
C035288		7.88	20	0.67	<10	5.04	1215	<1	1.69	175	680	12	0.06	<5	34	296	
C035289		6.63	10	0.70	<10	5.28	1125	1	1.55	207	630	9	0.05	<5	29	250	
CD35290		6.89	10	0.66	<10	4.80	1125	<1	1.66	176	620	11	0.04	<5	31	286	

3

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 10-OCT-2006

Account: UZJ

Project: 505 (006) B.L.

CERTIFICA'	TE OF	ANAI YSIS	VA06095043
			A WOOGGOOD A

										CERTIFICATE OF ANALYSIS VA06095043
Sample Description	Method Analyte Units LOR	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W Ppm 10	ME-ICP61 Zn ppm 2	S-IR08 S % 0.01	
C035287 C035288 C035289 C035290		<20 <20 <20 <20	0.54 0.66 0.47 0.57	<10 10 <10 <10	<10 <10 10 10	261 309 236 270	10 <10 <10 <10	97 97 93 89	0.08 0.07 0.04 0.04	
	**									
	ļ									
	:									
	ļ									
							_	_		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 10-OCT-2006

Account: UZJ

CERTIFICATE VA06095048

Project: 505 (006) B.L.

P.O. No.:

This report is for 7 Rock samples submitted to our lab in Vancouver, BC, Canada on 5-SEP-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

1

	SAMPLE PREPARATION								
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight	_							
LOG-22	Sample login - Rcd w/o BarCode								
CRU-31	Fine crushing - 70% <2mm								
SPL-21	Split sample - riffle splitter								
PUL-31	Pulverize split to 85% <75 um								

	ANALYTICAL PROCEDURES									
ALS CODE	DESCRIPTION	INSTRUMENT								
Ni-AA61	Trace Ni - four-acid digestion	AAS								
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES								
Co-AA61	Trace Co - four-acid digestion	AAS								
Cr-AA61	Trace Cr - four-acid digestion	AAS								
Cu-AA61	Trace Cu - four-acid digestion	AAS								
V-AA61	Trace V - four-acid digestion	AAS								
As-AA61	Trace As - four acid digestion	AAS								
S-IR08	Total Sulphur (Leco)	LECO								

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A)

Finalized Date: 10-OCT-2006

Account: UZJ

Project: 505 (006) B.L.

								C	VA06095048			
Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	Ni-AA61 Ni ppm 5	Co-AA61 Co ppm 5	Cr-AA61 Cr ppm 2	Cu-AA61 Cu ppm 2	V-AA61 V ppm 5	As-AA61 As ppm 5	S-IR08 S % 0.01	
	2.24 0.56 2.32 1.68 1.68	0.146 0.211 0.002 0.001 <0.001	0.058 0.019 <0.005 <0.005 <0.005	0.037 0.004 0.002 0.001 0.001	1200 422 26 20 10	130 99 21 20 14	1575 971 75 56 31	3100 506 102 103 65	175 122 174 169 172	346 <5 <5 <5 <5	0.56 0.07 2.41 2.47 1.60	
- T- T- T- T- T- T- T- T- T- T- T- T- T-	1.90 1.68	0.002 0.177	0.005 0.075	0.002 0.187	25 688	11 61	37 179	103 2500	119 167	7 793	0.20 0.68	
	Analyte Units	Analyte Units LOR Recvd Wt. kg 0.02 2.24 0.56 2.32 1.68 1.68 1.90	Analyte Units LOR Recvd Wt. kg ppm 0.02 0.001 2.24 0.146 0.56 0.211 2.32 0.002 1.68 0.001 1.68 <0.001	Analyte Units kg ppm ppm ppm 0.02 0.001 0.005 2.24 0.146 0.058 0.56 0.211 0.019 2.32 0.002 <0.005 1.68 0.001 <0.005 1.68 0.001 <0.005 1.68 <0.001 <0.005 1.69 0.005 0.005	Analyte Units LOR Recvd Wt. Au pt ppm ppm ppm ppm 0.02 0.001 0.005 0.001 2.24 0.146 0.058 0.037 0.56 0.211 0.019 0.004 2.32 0.002 <0.005 0.001 0.002 1.68 0.001 <0.005 0.001 1.68 <0.001 <0.005 0.001 1.68 <0.001 <0.005 0.001 1.68 0.001 <0.005 0.001	Analyte Units LOR Recvd Wt. Au Pt Pd Ni Ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	Analyte Units LOR Recvd Wt. kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm </td <td>Analyte Units LOR Recvd Wt. kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm<!--</td--><td> Method Analyte Units LOR PGM-ICP23 PGM-ICP23 PGM-ICP23 NI-AA61 Co-AA61 Cr-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 C</td><td> Method Analyte Units LOR PGM-ICP23 PGM-ICP23 PGM-ICP23 Ni-AA61 Co-AA61 Cr-AA61 Cu-AA61 V-AA61 V-AA61 Ni Co Cr Cu V V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 </td><td> Mothod Analyte Units LOR PGM-ICP23 PGM-ICP23 PGM-ICP23 NI-AA61 Co-AA61 Cr-AA61 Cu-AA61 V-AA61 As-AA61 Analyte Units LOR Pt Pd Ni Co Cr Cu V As Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Pp</td><td>Analyte Units LOR Recwd Wt. kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm<!--</td--></td></td>	Analyte Units LOR Recvd Wt. kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm </td <td> Method Analyte Units LOR PGM-ICP23 PGM-ICP23 PGM-ICP23 NI-AA61 Co-AA61 Cr-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 C</td> <td> Method Analyte Units LOR PGM-ICP23 PGM-ICP23 PGM-ICP23 Ni-AA61 Co-AA61 Cr-AA61 Cu-AA61 V-AA61 V-AA61 Ni Co Cr Cu V V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 </td> <td> Mothod Analyte Units LOR PGM-ICP23 PGM-ICP23 PGM-ICP23 NI-AA61 Co-AA61 Cr-AA61 Cu-AA61 V-AA61 As-AA61 Analyte Units LOR Pt Pd Ni Co Cr Cu V As Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Pp</td> <td>Analyte Units LOR Recwd Wt. kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm<!--</td--></td>	Method Analyte Units LOR PGM-ICP23 PGM-ICP23 PGM-ICP23 NI-AA61 Co-AA61 Cr-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 Cu-AA61 C	Method Analyte Units LOR PGM-ICP23 PGM-ICP23 PGM-ICP23 Ni-AA61 Co-AA61 Cr-AA61 Cu-AA61 V-AA61 V-AA61 Ni Co Cr Cu V V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61 V-AA61	Mothod Analyte Units LOR PGM-ICP23 PGM-ICP23 PGM-ICP23 NI-AA61 Co-AA61 Cr-AA61 Cu-AA61 V-AA61 As-AA61 Analyte Units LOR Pt Pd Ni Co Cr Cu V As Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Pp	Analyte Units LOR Recwd Wt. kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm </td

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 7-OCT-2006

Account; UZJ

CERTIFICATE VA06095041

Project: 505 (PICK)

P.O. No.:

This report is for 24 Soil samples submitted to our lab in Vancouver, BC, Canada on 5-SEP-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

.

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
SCR-41	Screen to -180um and save both							

	ANALYTICAL PROCEDUP	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	27 element four acid ICP-AES	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

" Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A
Total # Pages: 2 (A - C)
Finalized Date: 7-OCT-2006

Account: UZJ

Project: 505 (PICK)

·									(ERTIFI	CATE (F ANA	LYSIS	VA060	95041	
^	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1
TC035291 TC035292 TC035293 TC035294 TC035701		0.54 0.48 0.44 0.48 0.14	0.003 0.007 0.007 0.022 0.003	<0.005 <0.005 <0.005 <0.005 0.005	0.002 0.004 0.010 0.009 0.008	<0.5 <0.5 <0.5 <0.5 <0.5	8.98 9.24 9.21 8.77 6.95	21 7 23 6 16	660 900 860 710 490	1.2 0.9 0.9 0.8 0.9	<2 <2 <2 <2 <2 <2	2.71 2.94 2.70 3.25 3.22	<0.5 <0.5 <0.5 <0.5 <0.5	26 26 25 28 18	91 98 146 115 78	96 82 99 120 99
TC035702 TC035703 TC035704 TC035705 TC035706	400	0.40 0.36 0.42 0.22 0.16	0.003 0.004 0.007 0.004 0.003	<0.005 0.006 <0.005 <0.005 <0.005	0.003 0.002 0.004 0.005 <0.001	<0.5 <0.5 <0.5 0.5 <0.5	7.95 8.71 9.30 6.22 6.88	<5 15 10 12 11	570 500 390 510 600	1,0 0.9 0.7 0.9 0.9	<2 <2 <2 <2 <2 <2	2.90 3.30 4.72 2.42 2.65	<0.5 <0.5 <0.5 <0.5 <0.5	22 24 26 19 14	96 69 109 132 101	98 105 98 80 42
TC035753 TC035754 TC035755 TC035756 TC035757		0.56 0.64 0.62 0.36 0.38	0.002 0.006 0.006 0.008 0.012	<0.005 <0.005 <0.005 <0.005 <0.005	0.002 0.004 0.006 0.013 0.009	<0.5 <0.5 <0.5 <0.5 0.6	7.41 7.47 7.73 6.94 6.92	8 13 <5 11 12	530 540 490 460 510	0.9 0.9 0.8 0.7 0.9	<2 <2 <2 <2 <2 <2	2.76 3.64 3.53 2.79 2.79	<0.5 <0.5 <0.5 <0.5 <0.5	18 21 33 33 20	84 88 413 232 118	108 102 92 137 146
TC035758 TC035759 TC035760 C035801 C035802	<u>-</u>	0.40 0.60 0.46 0.44 1.16	0.005 <0.001 0.004 <0.001 NSS	<0.005 <0.005 <0.005 <0.005 NSS	0.003 <0.001 <0.001 <0.001 NSS	<0.5 <0.5 <0.5 <0.5 <0.5	7.05 7.97 6.45 8.55 9.72	<5 <5 6 <5 13	530 560 540 650 470	0.9 0.9 0.9 1.1 0.9	<2 <2 <2 <2 <2 <2	2.88 3.32 2.88 3.09 2.65	<0.5 <0.5 <0.5 <0.5 <0.5	17 16 15 19 28	168 135 81 89 90	65 73 88 64 101
C035355 C035356 C035357 C035358		0.38 0.32 0.32 0.32	<0.001 0.001 0.001 0.002	<0.005 <0.005 <0.005 <0.005	<0.001 0.001 <0.001 0.001	<0.5 <0.5 <0.5 <0.5	8.61 8.28 8.30 8.33	23 <5 8 18	510 580 550 590	0.9 0.9 0.9 0.9	<2 <2 <2 <2	3.02 3.25 4.05 3.36	<0.5 <0.5 <0.5 <0.5	20 20 21 22	62 111 106 114	77 63 80 94

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 7-OCT-2006

Account: UZJ

Project: 505 (PICK)

CERTIFICATE	OF ANALYSIS	VA06095041

Sample Description	Method Analyte Units LOR	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn Ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1
TC035291		5.24	10	1.62	20	1.65	1215	4	1.93	53	890	16	0.04	8	22	421
TC035292		5.84	20	1.61	10	2.01	1195	4	1.38	51	740	11	0.16	8	25	344
TC035293		6.01	20	1.72	10	2.08	1345	8	1.76	91	740	20	0.09	5	26	335
TC035294		5.89	10	1.48	20	2.16	1220	1	1.61	61	870	16	0.13	<5	28	297
TC035701		4.18	10	0.99	20	1.32	853	1	1.40	34	890	11	0.12	7	18	363
TC035702		4.97	10	1.33	20	1,71	1040	1	1.77	41	940	9	0.05	5	22	362
TC035703		5.37	10	1.35	20	1.67	1035	1	1.45	34	930	11	0.11	8	25	352
TC035704	1	6.16	10	1.04	10	2.46	1095	<1	1.76	46	860	5	0.11	<5	30	436
TC035705		3.16	10	1.23	20	1.36	939	<1	1.60	125	810	11	0.07	<5	11	341
TC035706		3.23	10	1.11	10	1.44	674	<1	1.87	36	740	5	0.05	<5	15	328
TC035753		4.51	10	1.23	20	1.57	933	1	1.53	40	840	9	0.18	8	19	311
TC035754		4.77	10	1.45	20	1.92	744	<1	1.26	55	840	10	0.18	<5	20	265
TC035755		5.95	10	1.31	10	3.55	969	1	1.41	206	790	7	0.18	<5	24	305
TC035756		4.99	10	0.99	10	3.24	1505	1	1.48	156	830	6	0.07	<5	21	273
TC035757		3.91	10	0.97	10	1.69	816	1	1.63	56	840	12	0.06	<5	16	300
TC035758		3.71	10	1.03	10	1.84	1185	<1	1.80	64	720	10	0.04	5	17	316
TC035759		4.09	10	1.21	20	1.92	758	<1	2.12	48	570	9	0.03	<5	20	371
TC035760		3.41	10	1.03	10	1.35	717	1	1.64	36	850	9	0.07	<5	14	2 94
C035801		3.67	10	1.44	20	1.37	985	7	2.35	68	830	12	0.04	<5	14	639
C035802		6.16	20	1.39	10	1.56	1215	5	1.29	58	860	14	0.12	<5	26	391
C035355		5.02	10	1.46	10	1.57	986	1	1.59	36	870	8	0.08	<5	21	415
C035356		4.78	10	1.33	20	1.97	953	<1	1.94	47	700	8	0.04	5	22	355
C035357		4.89	10	1.35	20	1.91	955	1	1.71	61	780	7	0.07	<5	23	367
C035358		4.88	10	1.33	20	2.00	1000	1	1.74	71	870	12	80.0	6	22	354

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 7-OCT-2006

Account: UZJ

Project: 505 (PICK)

CERTIFICATE OF ANALYSIS VA06095041

Method Analyte Units LOR	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	S-IR08 S % 0.01	
	<20 <20 <20 <20 <20	0.48 0.47 0.42 0.50 0.41	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	166 207 202 209 127	<10 10 <10 <10 <10	122 122 175 175 92	0.05 0.20 0.11 0.12 0.10	
* .	<20 <20 <20 <20 <20	0.51 0.58 0.62 0.33 0.45	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	168 195 233 92 120	<10 10 <10 <10 <10	116 106 123 98 88	0.06 0.09 0.09 0.06 0.04	
	<20 <20 <20 <20 <20 <20	0.46 0.43 0.47 0.41 0.45	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	153 156 184 161 132	10 <10 <10 <10 <10	99 163 144 96 110	0.14 0.20 0.13 0.06 0.04	
·	<20 <20 <20 <20 <20 <20	0.46 0.53 0.39 0.36 0.52	10 <10 <10 <10 <10	<10 <10 <10 10 <10	130 151 118 106 223	<10 <10 10 <10 <10	92 99 89 95 97	0.04 0.03 0.07 0.04 0.12	
	<20 <20 <20 <20	0.43 0.54 0.52 0.50	<10 <10 <10 10	<10 10 <10 <10	182 172 175 173	10 <10 <10 10	101 102 105 114	0.09 0.04 0.06 0.06	
	Analyte Units LOR	Analyte Units LOR	Analyte Units LOR 20 0.48	Analyte Units LOR	Analyte Units LOR	Analyte Units LOR	## Analyte Units LOR	Analyte Units LOR	Th

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 9-OCT-2006

Account: UZJ

CERTIFICATE VA06095049

Project: 505 (PICK)

P.O. No.:

This report is for 1 Rock sample submitted to our lab in Vancouver, BC, Canada on 5-SEP-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

SAMPLE PREPARATION									
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight	· <u>· · · · · · · · · · · · · · · · · · </u>							
LOG-22	Sample login - Rcd w/o BarCode								
CRU-31	Fine crushing - 70% <2mm								
SPL-21	Split sample - riffle splitter								
PUL-31	Pulverize split to 85% <75 um								

	ANALYTICAL PROCEDURES									
ALS CODE	DESCRIPTION	INSTRUMENT								
Ni-AA61	Trace Ni - four-acid digestion	AAS								
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES								
Co-AA61	Trace Co - four-acid digestion	AAS								
Cr-AA61	Trace Cr - four-acid digestion	AAS								
Cu-AA61	Trace Cu - four-acid digestion	AAS								
V-AA61	Trace V - four-acid digestion	AAS								
As-AA61	Trace As - four acid digestion	AAS								
S-IR08	Total Sulphur (Leco)	LECO								

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES **LAVAL QC H7L 5A7**

Signature: Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A)

Finalized Date: 9-OCT-2006

Account: UZJ

CERTIFICATE	OF ANALYSIS	VA06095049
CENTILICATE	OF ANAL I SIS	4 MUUUJJU43

										ERIIF	CATE	F ANALYSIS	VA06095049
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	Ni-AA61 Ni ppm 5	Co-AA61 Co ppm 5	Cr-AA61 Cr ppm 2	Cu-AA61 Cu ppm 2	V-AA61 V ppm 5	As-AA61 As ppm 5	S-IR08 S % 0.01	
276773		1.32	<0.001	<0.005	0.001	30	9	82	761	130	<5	0.03	
•													
	\$ 1												
						·							
	İ												
											,		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 8-OCT-2006

Account: UZJ

CERTIFICATE VA06095044

Project: 505 (PICK)

P.O. No.:

This report is for 11 Rock samples submitted to our lab in Vancouver, BC, Canada on

5-SEP-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-22	Sample login - Rcd w/o BarCode						
CRU-31	Fine crushing - 70% <2mm						
SPL-21	Split sample - riffle splitter						
PUL-31	Pulverize split to 85% <75 um						

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS81	38 element fusion ICP-MS	ICP-MS
ME-XRF06	Whole Rock Package - XRF	XRF
OA-GRA06	LOI for ME-XRF06	WST-SIM
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO

To: FALCONBRIDGE LTD - LAVAL EXPLORATION

ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES

LAVAL QC H7L 5A7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 8-OCT-2006

Account: UZJ

									(CERTIFICATE OF ANALYSIS VA06095				95044		
A	Method	WEI-21	PGM-ICP23	PGM-ICP23	PGM-ICP23	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81
	Analyte	Recvd Wt.	Au	Pt	Pd	Ag	Ba	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Ga
	Units	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.02	0.001	0.005	0.001	1	0.5	0.5	0.5	10	0.01	5	0.05	0.03	0.03	0.1
276770		0.66	0.002	<0.005	<0.001	<1	350	25.0	38.6	10	0.39	94	4.09	2.58	1.39	16.9
276771		0.92	<0.001	<0.005	<0.001	<1	387	26.2	37.6	10	0.46	99	4.21	2.48	1.32	18.8
276772		0.70	<0.001	<0.005	0.001	<1	736	35.5	36.6	50	1.04	116	4.00	2.48	1.48	19.4
276774		0.72	0.001	0.023	0.029	<1	29.0	4.6	156.5	6460	0.35	136	0.86	0.46	0.27	5.5
276775		0.86	0.004	0.032	0.056	<1	23.3	5.7	155.5	4930	0.13	201	0.97	0.51	0.20	4.4
276776	* ;	0.50	<0.001	<0.005	0.002	<1	459	26.9	50.5	150	3.36	89	4.12	2.49	1.55	19.3
276777		1.08	<0.001	<0.005	<0.001	<1	170.0	29.6	42.2	40	0.86	53	4.11	2.42	1.36	16.9
276778		1.30	0.001	<0.005	<0.001	<1	367	24.0	43.4	30	1.20	83	3.95	2.39	1.29	16.5
276805		0.60	0.027	0.018	0.027	<1	8.8	5.3	118.0	5510	0.44	173	1.19	0.78	0.05	6.2
276806		0.86	0.002	<0.005	0.006	<1	617	14.9	47.7	200	0.39	183	4.40	2.55	1.13	20.9
276807		0.58	<0.001	0.005	0.018	<1	3020	6.6	51.0	240	0.19	43	2.69	1.90	0.52	14.6
						,										

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 8-OCT-2006

Account: UZJ

Sample Description	Method Analyte Units LOR	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.5	ME-MS81 Lu ppm 0.01	ME-MS81 Mo ppm 2		CERTIFICATE OF ANALYSIS VA060950					95044		
								ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1	ME-MS81 Ni ppm 5	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1
276770 276771 276772 276774 276775		4.43 4.62 4.85 0.70 1.02	1.5 1.6 2.1 0.7 0.7	0.88 0.87 0.83 0.15 0.19	10.2 10.9 15.6 1.9 2.3	0.35 0.37 0.33 0.05 0.08	<2 <2 <2 <2 <2	2.5 2.5 3.9 1.5 1.9	16.8 17.5 19.9 2.6 3.8	13 12 23 1560 1550	<5 <5 14 <5 <5	3.64 3.72 4.61 0.58 0.73	30.9 50.9 72.6 3.4 3.1	4.32 4.40 4.93 0.64 0.81	1 1 1 1	485 512 528 17.3 10.4
276776 276777 276778 276805 276806	* **	4.70 4.74 4.36 1.25 3.60	1.8 1.6 1.7 0.8 2.0	0.83 0.85 0.81 0.27 0.85	11.4 12.3 10.0 2.5 6.5	0.37 0.34 0.35 0.09 0.29	<2 <2 <2 <2 <2	3.1 3.5 2.8 1.4 4.5	18.3 18.4 16.4 3.3 9.7	63 36 20 1590 70	<5 <5 <5 5 5	3.82 4.17 3.49 0.73 2.04	106.5 20.3 37.7 1.4 9.9	4.47 4.67 4.18 0.93 2.80	1 1 1 1	395 507 579 9.9 505
276807		1.76	0.9	0.59	3.2	0.30	<2	1.1	4.2	122	5	0.88	1.5	1.38	1	720

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 2 (A - D) Finalized Date: 8-OCT-2006

Account: UZJ

Sample Description	Method Analyte Units LOR	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 TI ppm 0.5	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	[CERTIFICATE OF ANALYSIS					VA060		
								ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.5	ME-MS81 Yb ppm 0.03	ME-MS81 Zn ppm 5	ME-MS81 Zr ppm 2	ME-XRF06 SiO2 % 0.01	ME-XRF06 Al2O3 % 0.01	ME-XRF06 Fe2O3 % 0.01
276770 276771 276772 276774 276775		0.1 0.2 0.2 0.1 0.1	0.71 0.73 0.72 0.12 0.15	0.96 1.00 2.54 0.29 0.35	<0.5 <0.5 <0.5 <0.5 <0.5	0.37 0.38 0.34 0.06 0.06	0.40 0.34 0.89 0.17 0.15	276 299 249 46 57	14 6 6 6 2	21.7 21.1 20.6 3.9 4.9	2.42 2.31 2.02 0.49 0.34	102 107 104 93 88	49 52 78 26 28	46.17 45.54 48.49 35.89 35.29	19.02 20.18 19.95 3.54 2.18	12.05 12.06 10.46 15.56 15.00
276776 276777 276778 276805 276806	* .	0.2 0.2 0.2 0.1 0.3	0.79 0.68 0.69 0.19 0.64	1.43 1.65 1.24 0.31 1.09	<0.5 <0.5 <0.5 <0.5 <0.5	0.35 0.34 0.32 0.09 0.33	0.42 0.65 0.83 0.15 0.50	409 306 324 139 339	5 4 2 12 3	22.5 20.7 20.3 6.2 22.5	2.18 2.14 2.28 0.59 2.25	104 109 104 80 92	63 60 57 32 75	45.09 47.71 49.86 45.46 48.31	17.52 18.70 18.41 3.93 15.46	13.07 10.92 11.37 13.08 11.64
276807		0.1	0.35	0.53	<0.5	0.29	0.23	274	6	15.2	1.88	82	34	46.26	15.63	11.34

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 8-OCT-2006

Account: UZJ

Project: 505 (PICK)

							-			ERTIFI	CATE	F ANA	YSIS	VA06095044
	Method Analyte Units	ME-XRF06 CaO %	ME-XRF06 MgO %	ME-XRF06 Na2O %	ME-XRF06 K2O %	ME-XRF06 Cr2O3 %	ME-XRF06 TiO2 %	ME-XRF06 MnO %	ME-XRF06 P2O5 %	ME-XRF06 SrO %	ME-XRF06 BaO %	ME-XRF06 LOI %	ME-XRF06 Total %	S-IR08 S
Sample Description	LOR	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
276770		5.55	4.93	4.27	1.64	<0.01	1.16	0.22	0.31	0.05	0.04	4.36	99.77	0.01
276771		4.11	5.36	3.86	2.05	<0.01	1.21	0.23	0.24	0.06	0.04	4.95	99.89	0.01
276772		5.26	4.13	3.40	3.10	<0.01	0.97	0.19	0.42	0.06	0.09	3.06	99.58	0.01
276774		2.15	30.26	0.31	0.13	0.69	0.29	0.19	0.05	<0.01	<0.01	10.25	99.30	0.11
276775		1.08	33.00	0.33	0.11	0.53	0.30	0.21	0.06	<0.01	<0.01	11.10	99.19	0.11
276776		7.21	6.06	1.36	3.70	0.01	1.22	0.23	0.37	0.04	0.05	3.71	99.65	0.01
276777	1	5.67	5.19	4.75	0.81	<0.01	1.00	0.20	0.40	0.06	0.02	4.24	99.68	0.01
276778	4	4.24	4.95	4.79	1.41	0.04	1.10	0.19	0.37	0.06	0.05	3.02	99.85	0.01
276805		0.47	28.09	0.26	0.05	0.62	0.41	0.09	0.03	< 0.01	< 0.01	7.34	99.85	1.61
276806		6.53	7.80	3.89	0.76	0.03	1.18	0.17	0.16	0.06	0.06	3.44	99.48	0.53
276807	-	13.13	6.83	2.33	0.10	0.03	0.47	0.19	0.10	0.07	0.29	3.15	99.91	0.19

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 26-SEP-2006

Account: UZJ

OCT - 2 2006

CERTIFICATE VA06083054

Project: Canalask	
P.O. No.: YK-001	
This report is for 141 Soil samples submitted to our lab in Vancouver, BC, Canada on 28-AUG-2006.	
The following have access to data associated with this certificate:	
CHRIS COCKBURN RICHARD NIEMINEN	

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
SCR-41	Screen to -180um and save both	
LOG-22	Sample login - Rcd w/o BarCode	

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO
ME-ICP61	27 element four acid ICP-AES	ICP-AES

OCT - 2 2006

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: CHRIS COCKBURN 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Signature:

TUTE:
Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

in territoria de la general de la seguida de la compania de la compania de la compania de la compania de la co La compania de la compania de la compania de la compania de la compania de la compania de la compania de la co

ALS Chemex

EXCELLENÇE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE OF ANALYSIS VA06083054	CERTIFICA	TE OF A	ANALYSIS -	VA06083054
------------------------------------	-----------	---------	------------	------------

										<u> </u>		7 0110	-1010	¥7000		
Sample Description	Method	WEI-21	PGM-ICP23	PGM-ICP23	PGM-ICP23	S-IR08	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.	Au	Pt	Pd	S	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr
	Units	kg	ppm	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOR	0.02	0.001	0.005	0.001	0.01	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1
SC276701		0.50	0.005	<0.005	0.004	0.02	<0.5	7.80	17	550	1.0	<2	2.61	<0.5	27	300
SC276702		0.52	0.003	<0.005	0.007	0.02	<0.5	7.46	17	560	1.0	<2	2.61	<0.5	33	251
SC276703		0.56	0.003	<0.005	0.010	0.03	<0.5	7.56	14	600	1.0	<2	2.74	<0.5	36	296
SC276704		0.40	0.005	0.009	0.002	0.02	<0.5	7.54	13	600	1.1	<2	2.88	<0.5	22	132
SC276705		0.44	0.020	0.006	0.006	0.05	<0.5	7.30	39	410	0.7	<2	2.84	<0.5	27	292
SC276706 SC276707	1	0.68 0.50	0.012 0.002	<0.005 <0.005	0.003 0.002	0.01 0.03	<0.5 <0.5	6.90 6.69	13 11	520 490	0.9	<2 <2	2.69 3.21	<0.5 <0.5	16 22	170 158
SC276707 SC276708 SC276709		0.50 0.46	0.002 0.002 0.005	<0.005 <0.005 <0.005	0.002 0.001 0.001	0.03 0.02	<0.5 <0.5 <0.5	6.22 7.57	18 <5	520 640	0.9 1.1	<2 <2	7.09 2.72	<0.5 <0.5	16 17	73 97
SC276710 SC276711		0.26	0.002 <0.001	<0.005 <0.005	0.002 <0.001	0.05 <0.01	<0.5 <0.5	5.97 7.91	7	620 590	0.9	<2 <2	2.43 2.34	<0.5 <0.5	17 17	69 89
SC276712	ļ	0.46	0.002	<0.005	0.001	0.01	<0.5	7.77	18	570	1.2	<2	2.23	<0.5	20	121
SC276713		0.58	0.006	<0.005	0.004	0.02	<0.5	7.30	14	660	1.2	<2	2.76	<0.5	20	123
SC276714		0.46	0.003	<0.005	0.002	0.01	<0.5	7.81	19	650	1.1	<2	2.43	<0.5	23	129
SC276715 SC276716		0.42	<0.001	<0.005 <0.005	0.001	0.01	<0.5 <0.5	7.77	15 5	600 570	1.1	<2 <2	2.22	<0.5 <0.5	17 25	277
SC276717		0.64	0.001	<0.005	0,003	0.02	<0.5	6.54	18	510	1.0	<2	2.55	<0.5	21	125
SC276718		0.48	0.003	0.008	0,005	0.02	<0.5	6.59	16	500	0.9	<2	3.13	<0.5	20	177
SC276719		0.42	0.001	<0.005	0,006	0.04	<0.5	5.92	6	480	0.9	<2	3.02	<0.5	21	154
SC276720 SC276721		0.60	0.006	<0.005 <0.005	0.009	0.02	<0.5 13.5	7.19 7.33	9	630 580	1.1	<2	2.71	<0.5 <0.5	23	168 173
SC276722		0.38	0.003	<0.005	0.003	0.03	<0.5	4.13	7	490	0.7	<2	3.53	<0.5	8	56
SC276723		0.70	0.037	<0.005	0.002	0.03	<0.5	7.64	56	740	1.0	<2	2.40	<0.5	28	195
SC276724		0.50	0.001	<0.005	0.002	0.01	<0.5	7.61	14	610	1.2	<2	2.36	<0.5	20	119
SC276725		0.58	0.004	<0.005	0.001	0.02	<0.5	6.87	16	650	1.1	<2	2.62	<0.5	20	112
SC276726 SC276727		0.54 0.48	0.003	<0.005 <0.005 <0.005	0.003 0.001	0.03 0.04	<0.5 <0.5	6.83 6.91	9	620 540	1.0	<2 <2	2.53 2.58	<0.5 <0.5	20 21	123 128
SC276728		0.58	0.004	<0.005	0.003	0.03	<0.5	6.93	14	570	1.0	<2	2.52	<0.5	18	110
SC276729		0.72	0.003	<0.005	0.002	0.01	2.0	7.24	13	560	1.1	<2	2.45	<0.5	18	138
SC276730		0.56	0.002	<0.005	0.002	<0.01	<0.5	7.81	15	600	1.2	<2	2.46	<0.5	20	126
SC276731 SC276732		0.60 0.48	0.005 0.002	<0.005 <0.005	0.006 0.004	0.02 0.01	<0.5 <0.5	7.00 7.17	8 7	560 590	1.0	<2 <2	2.43 2.52	<0.5 <0.5	29 15	375 152
SC276733		0.56	0.003	<0.005	0.006	0.04	<0.5	6.03	16	450	0.8	<2	3.02	<0.5	18	223
SC276734		0.54	0.002	<0.005	0.003	0.02	<0.5	7.28	15	610	1.1	<2	3.02	<0.5	21	147
SC276735		0.66	0.004	0.007	0.003	0.03	<0.5	6.74	<5	500	1.0	<2	3.45	<0.5	19	156
SC276736		0.54	<0.001	<0.005	0.001	0.01	<0.5	7.71	10	510	1.1	<2	2.72	<0.5	20	137
SC276737		0.48	0.004	<0.005	0.001	0.31	<0.5	7.13	8	530	1.0	<2	2.89	<0.5	20	124
SC276738		0.70	0.003	<0.005	0.001	0.21	<0.5	7.99	13	630	1.3	<2	2.90	<0.5	22	133
SC276740		0.30	0.002	0.028	<0.001	0.51	<0.5	4.35	12	420	0.8	<2	3.29	<0.5	12	55
SC276741		0.40	<0.001	<0.005	<0.001	0.45	<0.5	4.97	7	450	0.8	<2	3.03	<0.5	10	58

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Take atam a sawat was all the star of all the

Page: 2 - B Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE OF ANALYSIS VA06083054

Sample Description	Method Analyte Units LOR	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1
SC276701		71	5.40	1.03	2.61	812	3	2.02	187	480	11	0.01	 <5	315	0.52	165
SC276702		127	5.61	0.91	2.31	1310	3	1.61	259	760	10	0.03	5	275	0.48	159
SC276703		84	4.99	0.95	2.50	878	2	1.74	284	840	8	0.03	< 5	296	0.53	154
SC276704		56	4.56	0.94	1,42	907	2	1.87	73	770	7	0.03	<5	338	0.56	148
SC276705		74	5.20	1,11	2.27	927	3	1.26	158	650	7	0.10	<5	249	0.45	168
SC276706	-	63	4.32	1.15	1.94	785	1	2.07	57	680	6	0.02	<5	280	0.48	156
SC276707	ŧ	44	4.60	0.95	1.82	890	1	1.75	62	730	12	0.04	<5	278	0.52	142
SC276708	1	60	4.13	1.07	1.23	1155	1	1.28	37	530	12	0.07	<5	247	0.37	110
SC276709	`	60	4.46	1.05	1.35	941	1	1.90	41	670	10	0.04	<5	322	0.52	137
SC276710		56	3.55	0.90	0.83	800	1	1.53	27	1110	9	0.08	<5	301	0.39	92
SC276711		30	4.37	1.21	1.27	599	1	2.18	37	270	10	0.01	<5	379	0.55	131
SC276712		62	5.23	0.87	1.39	611	2	1.79	51	370	10	0.01	<5	284	0.61	161
SC276713		104	4.59	0.94	1.45	817	1	1.75	61	850	7	0.03	<5	290	0.54	145
SC276714		56	4.97	0.93	1.62	803	1	1.91	60	500	8	0.00	<5	292	0.58	158
SC276715		41	4.94	0.94	1.37	638	1	1.83	44	310	8	0.01	<5	289	0.62	158
SC276716		78	5.28	1.12	2.61	831	<1	1.84	165	590	9	0.01	<5	257	0.53	166
SC276717		73	4.02	0.95	1.27	712	1	1.67	93	710	14	0.04	< 5	295	0.51	123
SC276718		73	4.00	0.91	1.73	748	1	1.64	120	1000	10	0.08	<5	310	0.48	125
SC276719		70	3.87	0.82	1.50	1135	< 1	1.42	108	1020	9	0.07	<5	278	0.43	115
SC276720		84	4.50	1.02	1.54	957	1	1.83	134	640	11	0.04	<5	322	0.51	132
SC276721		91	4.74	1.03	2.04	847	1	1.88	95	800	12	0.02	<5	292	0.54	149
SC276722		86	2.39	0.63	0.70	1065	1	1,11	27	930	6	0.15	<5	259	0.30	65
SC276723		83	5.75	1.53	2.20	1045	3	1.81	81	370	23	0.04	<5	256	0.54	186
SC276724		45	4.82	1.03	1.26	729	1	1.90	45	610	9	0.02	<5	315	0.61	151
SC276725		6 6	4.27	0.99	1.32	1210	<1	1.69	52	920	12	0.05	<5	296	0.52	133
SC276726		48	4.10	1.04	1.62	757	1	1.60	55	870	9	0.05	<5	266	0.53	129
SC276727		47	4.66	0.95	1.58	966	1	1.70	52	900	6	0.06	<5	282	0.54	147
SC276728		61	4.32	0.96	1.42	997	<1	1,72	47	1030	31	0.05	<5	293	0.52	129
SC276729		74	4.40	1.06	1.60	926	1	1.86	60	6 50	7	0.03	<5	291	0.54	149
SC276730		47	5.11	0.95	1.50	688	1	1.87	54	430	8	0.02	<5	295	0.60	154
SC276731		82	5.38	1.05	3.18	953	<1	1.86	295	520	7	0.01	<5	253	0.51	161
SC276732		61	3.98	1.10	1.21	677	1	1.96	79	470	12	0.02	<5	335	0.59	133
SC276733		50	4.03	0.95	2.12	735	<1	1.67	106	850	7	0.09	<5	274	0.45	125
SC276734		63	4.46	1.07	1.63	953	1	1.90	69	810	9	0.04	<5	328	0.52	138
SC276735		76	4.18	0.98	1.94	598	1	1.84	81	770	15	0.07	<5	305	0.47	133
SC276736	_	55	4.90	0.95	1.72	671	<1	1.98	63	320	10	0.01	<5	314	0.54	154
SC276737		45	4.58	0.96	1.63	960	1	1.86	49	930	12	0.05	<5	317	0.54	142
SC276738		106	5.09	1.02	1.65	828	1	1.93	67	730	10	0.02	<5	322	0.63	155
SC276740		70	2.55	0.58	0.74	909	1	1.10	34	1060	2	0.13	<5	246	0.30	6 5
SC276741		30	2.44	0.84	0.75	592	<1	1,39	21	930	3	0.12	<5	293	0.34	75

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

1、"我们"的特殊的是"特别的","是一个,我们就是一个人,这个人,一个人就是一个人,这个人,这个人,这个人,不是一个人。

Page: 2 - C Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE OF ANALYSIS VA06083054

Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm	ME-ICP61 Zn ppm			 					
Sample Beschpiton		10	2			 				_	
SC276701		<10	91		·	 · -	•		• •		
SC276702		<10	92								
SC276703		<10	105								
SC276704		<10	84								
SC276705		<10	98								
			_			 	· · ·				 -
SC276706	\$	<10	79								
SC276707	.7	<10	120								
SC276708	*	10	125								
SC276709		<10	115								
SC276710		<10	54			 					
SC276711		<10	69								
SC276712		<10	83								
SC276713		<10	97								
SC276714		<10	105								
SC276715		<10	83								
SC276716		<10	104								
SC276717		<10	111								
SC276718		<10	91								
SC276719		<10	83								
SC276720		<10	80								
SC276721		<10	98			 					-
SC276722		<10	58								
SC276723		<10	214								
SC276724		<10	105								
SC276725		<10	91								
						 					
SC276726		<10	276								
SC276727		<10	106								
SC276728		<10	126								
SC276729		<10	94								
SC276730		<10	85			 					
SC276731		<10	90								
SC276732		<10	100								
SC276733		<10	102								
SC276734		<10	98								
SC276735		<10	124								
SC276736		<10	81								
SC276737		<10	179								
SC276738		<10	107								
SC276740		<10	60								
SC276741		<10	53								
		<u> </u>		 		 					

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - A Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFIC	ATE OF ANA	ALYSIS	VA06083054

									CERTIFICATE OF ANALTSIS						VA00083034			
Sample Description	Method	WEI-21	PGM-ICP23	PGM-ICP23	PGM-ICP23	S-IR08	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61		
	Analyte	Recvd W1.	Au	Pt	Pd	S	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co	Cr		
	Units	kg	ppm	ppm	ppm	%	Ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm		
	LOR	0.02	0.001	0.005	0.001	0.01	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1		
SC276742	-	0.38	0.008	<0.005	<0.001	0.20	<0.5	7.71	11	550	1.3	2	2.21	<0.5	19	84		
SC276901		0.50	0.004	<0.005	0.001	0.14	<0.5	7.31	23	540	1.2	<2	2.85	<0.5	26	181		
SC276902		0.52	0.007	0.019	0.021	0.34	<0.5	6.50	17	540	1.0	<2	2.42	0.6	27	190		
SC276903		0.20	0.001	<0.005	0.002	0.41	<0.5	5.25	6	460	0.8	<2	2.23	<0.5	10	81		
SC276904	* 1	0.34	0.001	<0.005	0.001	0.18	<0.5	7.04	22	520	0.9	<2	2.19	<0.5	22	131		
SC276905		0.44	0.003	<0.005	<0.001	0.14	<0.5	7.21	22	530	1.1	<2	1.88	<0.5	21	139		
SC276906		0.32	0.001	<0.005	0.001	0.15	<0.5	7.29	23	580	1.0	<2	2.11	<0.5	21	123		
SC276907		0.34	0.002	<0.005	0.002	0.25	<0.5	6.75	20	530	1.0	<2	2.51	<0.5	19	129		
SC276908		0.36	0.006	<0.005	0.002	0.20	<0.5	6.93	15	560	1.1	<2	2.65	<0.5	20	128		
SC276909		0.40	0.002	<0.005	0.003	0.25	<0.5	7.11	12	550	1.0	<2	2.67	<0.5	16	127		
SC276910		0.10	0.006	<0.005	0.001	0.49	<0.5	4.54	13	450	0.8	<2	2.73	<0.5	20	66		
SC276911		0.58	0.002	<0.005	0.002	0.23	<0.5	7.16	17	580	1.1	<2	2.36	<0.5	21	132		
SC276912 SC276913 SC276914 SC276915		0.54 0.44 0.54	0.004 0.003 0.002	<0.005 <0.005 <0.005 <0.005	0.006 0.002 0.003	0.13 0.16 0.26 0.19	<0.5 <0.5 <0.5	7.31 7.49 6.97	10 18 23 23	550 570 560 540	1.0 1.1 1.0	<2 <2 <2 <2	2.61 2.68 2.71 2.49	<0.5 <0.5 <0.5 <0.5	24 17 22 22	161 141 142 150		
SC276916		0.54	0.002	<0.005	0.001	0.15	0.6	7.82	18	560	1.2	<2	2.27	<0.5	22	139		
SC276917		0.34	0.002	<0.005	0.002	0.19	<0.5	7.15	13	580	1.1	<2	2.82	<0.5	20	140		
SC276918		0.50	0.001	<0.005	0.003	0.26	<0.5	6.82	14	550	1.0	<2	2.45	<0.5	14	94		
SC276919		0.44	0.003	<0.005	<0.001	0.21	<0.5	7.29	22	570	1.2	<2	2.54	<0.5	21	113		
SC276920		0.38	0.004	<0.005	0.001	0.13	<0.5	7.22	7	580	1.1	<2	2.56	<0.5	18	115		
SC276921		0.22	0.004	<0.005	0.004	0.33	<0.5	6.18	7	490	0.9	<2	3.14	<0.5	12	80		
SC276922		0.56	0.004	<0.005	0.003	0.19	<0.5	7.51	18	560	1.0	<2	2.43	<0.5	24	161		
SC276923		0.64	0.002	<0.005	0.004	0.31	<0.5	6.98	18	690	1.1	<2	3.06	<0.5	20	120		
SC276924 SC276926 SC276927 SC276928		0.22 0.20 0.54 0.52	0.004 0.002 0.003 0.003	<0.005 <0.005 <0.005 0.006	0.003 0.002 0.004 0.003	0.13 0.29 0.24 0.27	<0.5 <0.5 <0.5 <0.5	6.56 7.44 6.68	18 13 16 19	550 630 530	1.2 0.9 1.1 1.0	<2 <2 <2 <2	2.46 2.74 2.67 2.71	<0.5 0.5 <0.5 <0.5	23 18 21 23	181 113 136 145		
SC276929 SC276930 SC276931 SC276932		0.36 0.22 0.24 0.38	0.002 <0.001 0.003 0.002	<0.005 <0.005 <0.005 <0.005	<0.001 0.001 <0.001 0.002	0.25 0.17 0.16 0.19	<0.5 <0.5 <0.5 <0.5	7.06 7.06 7.60 7.53	26 9 28 16	450 620 500 640	1.0 1.1 1.0 1.1	<2 <2 <2 <2 <2	2.41 2.64 1.67 2.63	<0.5 <0.5 <0.5 <0.5	18 16 19 18	120 94 123 129		
SC276933 SC276934 SC276935 SC276936		0.52 0.24 0.40 0.60	0.011 <0.001 0.002 0.005	0.006 <0.005 0.005	0.010 <0.001 <0.001 0.004	0.04 0.05 <0.01 0.03	<0.5 <0.5 <0.5	7.27 5.77 7.21 7.52	21 14 12 23	570 470 610	1.0 0.8 1.1	<2 <2 <2 <2	2.57 2.50 2.20 2.93	<0.5 <0.5 <0.5 <0.5	33 16 11 22	408 104 75 126		
SC276937		0.64	0.004	<0.005	0.002	0.02	<0.5	7.86	23	610	1.2	<2	2.96	<0.5	21	135		
SC276938		0.52	0.004	<0.005	<0.001	0.03	<0.5	6.94	15	590	1.1	<2	2.91	<0.5	17	106		
SC276939		0.32	0.001	<0.005	0.001	0.02	<0.5	7.22	13	560	1.0	<2	2.41	<0.5	13	102		
SC276940		0.34	0.002	<0.005	<0.001	0.01	<0.5	7.38	16	590	1.0	2	2.62	<0.5	16	110		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - B Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

										ERTIFI	CATE	F ANA	LYSIS	VA060	83054	
Sample Description	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sr	Ti	V
	Units	ppm	%	%	%	ppm	ppm	%	ppm	Ppm	ppm	%	ppm	ppm	%	ppm
	LOR	1	0.01	0.01	0.01	5	1	0.01	1	10	2	0.01	5	1	0.01	1
SC276742		66	4.77	1.14	1.30	899	2	1.34	38	680	7	0.04	<5	237	0.47	133
SC276901		138	5.49	1.01	2.18	856	1	1.90	98	360	20	0.02	<5	326	0.52	164
SC276902		110	4.26	0.98	2.42	734	1	1.66	206	750	13	0.09	<5	284	0.45	137
SC276903 SC276904 SC276905		42 44 46	3.06 4.86 4.63	0.80 0.88 0.85	0.90 1.44 1.50	469 664 746	2 2	1.33 1.69 1.62	34 55 63	1070 400 250	8 14 14	0.10 0.03 0.01	<5 <5 <5	275 292 264	0.37 0.52 0.48	95 158 164
SC276905 SC276906 SC276907 SC276908 SC276909	1	40 62 51 35	4.82 4.09 4.14 4.38	0.83 0.91 0.90 1.03 0.94	1.64 1.68 1.60	843 684 1075 508	2 1 1 <1	1.62 1.78 1.61 1.85 1.75	50 66 62 44	410 860 880 540	12 10 8 12	0.01 0.02 0.04 0.03 0.05	\$ \$ \$ \$	308 297 339 314	0.45 0.45 0.45 0.51	157 135 135 147
SC276910		49	3.36	0.65	0.82	3660	2	1.10	38	1200	7	0.12	<5	263	0.29	83
SC276911		63	4.58	1.00	1.64	741	1	1.77	60	810	10	0.03	<5	308	0.48	147
SC276912		115	4.74	1.08	2.12	859	<1	1.87	91	770	8	0.02	<5	298	0.49	163
SC276913		50	4.17	1.02	1.75	617	<1	1.87	58	650	12	0.03	<5	322	0.54	159
SC276914 SC276915 SC276916 SC276917	-	71 54 58 87	4.43 4.87 5.24 4.59	0.92 1.01 0.86 0.90	1.63 1.76 1.50 1.61	767 706 916	1 1 2	1.73 1.90 1.90 1.68	63 68 68 62	450 400 890	12 11 17	0.04 0.02 0.01 0.04	<5 <5 <5 <5	316 320 327 314	0.50 0.54 0.58 0.54	152 165 168 147
SC276918 SC276919 SC276920		61 121 73	3.83 4.62 4.40	1.04 0.94 0.96	1.27 1.53 1.49	596 891 949	1 1	1.82 1.71 1.80	42 59 55	530 740 750	12 13 13	0.03 0.03 0.02	<5 <5 <5	354 326 340	0.46 0.46 0.50	123 137 139
SC276921		73	3.12	0.87	0.94	488	1	1.61	30	570	9	0.06	<5	358	0.41	97
SC276922		73	4.79	0.99	1.83	828	1	1.75	65	840	11	0.04	<5	300	0.52	162
SC276923		100	4.49	0.89	1.42	810	1	1.60	67	830	12	0.05	<5	310	0.46	140
SC276924		102	4.95	1.09	1.99	845	2	1.89	88	720	12	0.02	<5	310	0.55	171
SC276926		47	3.76	0.88	1.48	689	<1	1.63	54	880	11	0.05	<5	310	0.45	130
SC276927		94	4.55	0.98	1.66	1245	1	1.84	72	800	13	0.03	<5	338	0.50	146
SC276928		79	4.51	0.88	1.70	1130	1	1.73	79	820	13	0.04	<5	300	0.45	140
SC276929		45	4.84	0.77	1.17	562	4	1.55	63	410	56	0.04	<5	274	0.47	139
SC276930		41	3.90	1.08	1.18	1075	2	1.92	34	960	10	0.02	<5	387	0.49	121
SC276931 SC276932 SC276933 SC276934 SC276935		51 57 104 48 37	6.07 4.25 5.58 3.50 3.64	0.82 1.02 0.93 0.86 1.15	1.16 1.46 3.40 1.39 1.02	467 819 933 719 491	3 1 <1 1	1.70 1.92 1.91 1.40 2.00	49 65 274 49 30	410 580 660 910 300	18 12 14 10 10	0.02 0.02 0.01 0.07 0.01	<5 <5 <5 5 <5	264 370 302 262 396	0.68 0.51 0.53 0.40 0.45	211 134 165 119 110
SC276936		63	4.79	1.04	1.70	853	1	1.86	57	740	9	0.03	<5	335	0.52	150
SC276937		72	4.65	1.09	1.64	791	2	1.97	55	790	9	0.03	<5	359	0.57	161
SC276938		100	4.34	1.03	1.35	991	1	1.69	53	1020	9	0.07	<5	348	0.45	130
SC276939		43	4.29	1.02	1.07	478	2	1.97	35	360	6	0.02	<5	348	0.54	127
SC276940		41	4.26	1.08	1.23	593	1	2.05	42	400	8	0.02	<5	372	0.52	124

SC276939

SC276940

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

<10

<10

85

97

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - C Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

					CERTIFICATE	OF ANALYSIS	VA06083054	
Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2		 			
\$C276742 \$C276901 \$C276902 \$C276903 \$C276904		<10 <10 <10 <10 <10	71 151 109 75 101					
SC276905 SC276906 SC276907 SC276908 SC276909	Link Park	<10 <10 <10 <10 <10	121 99 95 94 85					
SC276910 SC276911 SC276912 SC276913 SC276914		<10 <10 <10 <10 <10	97 88 112 91 99					
SC276915 SC276916 SC276917 SC276918 SC276919		<10 <10 <10 <10 <10	99 114 104 77 86		 			_
SC276920 SC276921 SC276922 SC276923 SC276924		<10 <10 <10 <10 <10	94 59 115 78 105					
SC276926 SC276927 SC276928 SC276929 SC276930	!	<10 <10 <10 <10 <10	86 95 98 123 106					· <u> </u>
SC276931 SC276932 SC276933 SC276934 SC276935		<10 <10 <10 <10 <10	118 85 107 85 71					
SC276936 SC276937 SC276938		<10 <10 <10	100 96 104	 .*	··	· -		

SC276978

SC276979

SC276980

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

0.52

0.38

0.76

0.003

0.002

0.003

< 0.005

< 0.005

< 0.005

0.004

0.002

0.012

0.29

80.0

0.13

<0.5

<0.5

<0.5

8.06

8.08

7.72

<5

<5

13

620

670

500

1.0

1.1

1.0

<2

<2

<2

3.28

3.04

3.76

< 0.5

<0.5

0.6

21

19

31

166

112

913

212 Brooksbank Avenue
North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 4 - A Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

[3] M. G. Sandan, A. Gardanara, Anna Sandana, Appl. Phys. 5, 127 (1997).

Account: UZJ

									CERTIFICATE OF ANALYSIS VA06083054						83054	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm
SC276941		0.38	0.003	<0.005	<0.001	0.01	<0.5	7.09	11	550	1.0	<2	2.41	<0.5	15	115
SC276942		0.44	0.003	<0.005	<0.001	0.01	<0.5	7.29	13	570	0.9	<2	2.39	<0.5	15	121
SC276943		0.36	0.002	<0.005	<0.001	0.01	<0.5	7.15	19	560	1.0	<2	2.53	<0.5	17	101
SC276944		0.42	0.002	< 0.005	0.002	0.01	<0.5	7.45	13	570	1.0	<2	2.73	<0.5	17	131
SC276945		0.58	0.003	<0.005	<0.001	0.01	<0.5	7.46	21	560	1.0	<2	2.34	<0.5	16	129
SC276946		0.32	0.003	< 0.005	0.002	0.02	<0.5	7.41	12	690	1.1	<2	3.07	<0.5	11	65
SC276947	\$	0.40	0.004	< 0.005	0.001	0.01	<0.5	7.54	13	740	1.2	<2	2.61	<0.5	10	51
SC276948	1	0.42	0.001	0.009	0.003	0.03	0.8	7.07	19	670	1.1	<2	2.86	<0.5	13	69
SC276949		0.44	0.019	0.017	0.010	0.03	<0.5	6.61	30	500	0.9	<2	2.37	<0.5	50	591
SC276950		0.44	0.006	< 0.005	0.007	0.03	<0.5	7.14	26	530	1.0	<2	2.36	<0.5	41	355
SC276951		0.56	0.011	0.013	0.012	0.02	<0.5	6.99	24	550	0.9	<2	2.54	0.5	56	706
SC276952		0.50	0.002	< 0.005	0.001	0.02	<0.5	7.76	9	590	1.0	<2	2,56	<0.5	18	127
SC276953		0.54	0.005	< 0.005	<0.001	0.01	<0.5	7.94	9	630	1.2	<2	2,47	<0.5	18	122
SC276954		0.44	<0.001	< 0.005	<0.001	0.01	<0.5	8.23	16	650	1.3	<2	2.51	<0.5	20	123
SC276955		0.60	0.003	0.006	0.003	0.02	<0.5	8.14	15	640	1.2	<2	2.48	<0.5	18	113
SC276956		0.54	0.001	<0.005	<0.001	0.01	<0.5	8.09	15	640	1.2	<2	2.42	<0.5	15	104
SC276957		0.44	0.001	0.035	< 0.001	0.03	<0.5	7.95	11	600	1.2	<2	2.18	<0.5	22	118
SC276958		0.42	< 0.001	< 0.005	0.001	0.02	<0.5	8.00	20	600	1.2	<2	2.19	<0.5	20	116
SC276959		0.44	0.001	< 0.005	< 0.001	0.01	<0.5	7.80	17	600	1.2	<u>-</u> <2	2.20	<0.5	18	127
SC276960		0.56	0.004	< 0.005	0.001	0.02	<0.5	8.12	20	630	1.1	< <u>2</u>	2.65	<0.5	20	149
SC276961		0.42	0.006	<0.005	0.002	0.01	<0.5	7.72	16	720	1.3	<2	2.47	<0.5	12	74
SC276962		0.38	0.007	0.006	0.015	0.04	<0.5	6.99	33	500	0.8	<2	2.44	<0.5	38	597
SC276963		0.56	0.008	0.007	0.017	0.04	<0.5	7.29	27	490	0.8	<2	2.36	<0.5	42	724
SC276964		0.60	0.006	0.011	0.014	0.03	<0.5	7.19	36	490	0.8	<2	2.24	<0.5	40	700
SC276965		0.62	0.021	0.011	0.014	0.04	<0.5	7.31	36	500	0.8	<2	2.38	<0.5	37	546
SC276966		0.50	0.003	<0.005	0.005	0.03	<0.5	7.02	13	540	0.9	<2	3.97	<0.5	20	147
SC276967		0.48	0.006	<0.005	0.007	0.06	<0.5	6.06	14	490	0.8	<2	3.87	<0.5	21	170
SC276968		0.42	0.003	<0.005	0.003	0.04	<0.5	7.32	15	540	0.9	<2	2.99	<0.5	15	214
SC276969		0.46	0.009	<0.005	0.003	0.19	<0.5	7.60	10	640	1.0	<2	2.68	0.6	23	139
SC276970		0.48	0.014	<0.005	0.002	0.28	<0.5	7.44	15	630	1.1	<2	2.66	<0.5	23	135
SC276971		0.48	0.018	<0.005	0.001	0.23	<0.5	7.86	23	620	1.0	<2	2.74	<0.5	27	154
SC276972		0.42	0.006	<0.005	0.003	0.21	<0.5	7.64	22	610	1.0	<2	2.62	<0.5	26	141
SC276973		0.42	0.004	<0.005	0.001	0.16	<0.5	8.34	13	730	1.3	<2	2.78	<0.5	23	137
SC276974		0.54	0.003	<0.005	0.002	0.10	<0.5	8.13	30	1090	1.2	<2	2.95	<0.5	32	201
SC276975		0.56	0.003	<0.005	0.005	0.22	<0.5	8.09	<5	620	1.0	<2	3.27	0.5	20	253
SC276976		0.44	0.004	<0.005	0.002	0.27	<0.5	7.76	11	590	1.0	<2	3.10	<0.5	22	179
SC276977		0.46	<0.001	<0.005	0.004	0.27	<0.5	6.93	<5	550	0.9	<2	3.10	<0.5	18	145
55210011		0.70	~0.00 l	~0.000	U.UU -1	0.51	~0.0	Ų.33	~	550	υ.5	~2	3.31	~0.0	10	140

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 4 - B Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

										ERTIFI	CATE (OF ANA	LYSIS	VA060	83054	
Sample Description	Method Analyte Units LQR	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P Ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1
SC276941		43	4.28	1.02	1.21	573	2	1.94	40	370	8	0.02	<5	335	0.56	136
SC276942		45	4.24	1.09	1.37	566	2	2.05	49	360	7	0.01	<5	343	0.51	129
SC276943		41	3.86	1.16	1.22	577	2	2.08	41	370	9	0.02	<5	379	0.49	118
SC276944		46	4.48	1.07	1.46	661	1	2.10	45	460	9	0.02	<5	350	0.58	142
SC276945		39	4.90	0.91	1.31	560	2	1.91	44	290	10	0.01	<5	313	0.60	147
SC276946		58	3.58	1.29	0.95	500	1	2.19	25	460	8	0.04	<5	440	0.42	85
SC276947	•	32	3.28	1.59	0.92	528	1	2.43	22	290	13	0.02	<5	486	0.40	83
SC276948	1	111	3.36	1.21	0.96	631	2	2.00	28	560	7	0.04	<5	420	0.41	91
SC276949		133	5.44	1.01	2.99	1375	1	1.46	404	600	13	0.04	<5	270	0.44	152
SC276950		103	5.43	1.09	2.13	1365	1	1.50	229	680	9	0.04	<5	264	0.45	162
SC276951		143	5.84	1.00	3.19	1555	1	1.55	435	670	11	0.04	<5	289	0.45	155
SC276952		54	4.55	1.10	1.71	674	1	2.02	73	410	11	0.02	<5	353	0.51	153
SC276953		58	4.55	1.16	1.62	625	1	2.12	70	350	15	0.02	<5	371	0.53	152
SC276954		67	4.81	1.13	1.46	683	1	2.08	82	370	11	0.01	<5	381	0.56	152
SC276955_		58	4.64	1.19	1.57	663	_1	2.18	80	350	11	0.01	<5	391	0.53	152
SC276956		47	4.26	1.26	1.48	586	1	2.26	58	330	10	0.01	<5	412	0.51	140
SC276957		63	4.85	0.95	1.48	821	2	1.87	53	400	11	0.02	<5	341	0.55	148
SC276958		51	4.78	1.01	1.49	713	2	1.92	52	350	13	0.01	<5	347	0.58	151
SC276959		51	4.76	0.97	1.52	731	1	1.86	48	380	9	0.01	5	329	0.58	150
SC276960		47	4.98	1.06	1.74	835	1	2.06	59	620	10	0.01	<u>-</u> <5	348	0.55	169
SC276961		38	3.37	1.45	1.03	777	1	2.34	25	460	10	0.02	<5	474	0.44	101
SC276962		8 8	5.24	1.03	2.81	1140	1	1.43	387	710	12	0.06	<5	326	0.46	152
SC276963		88	5.79	1.05	3.55	1285	1	1.43	396	700	10	0.05	<5	313	0.45	166
SC276964		76	5.67	1.06	3.26	1240	2	1.44	349	620	10	0.05	<5	304	0.48	168
SC276965		75	5.50	1.09	3.13	1185	1	1.46	392	680	15	0.06	<5	336	0.47	161
SC276966		89	4.29	1.12	2.01	919	<1	1.95	77	980	12	0.05	<5	334	0.45	147
SC276967		83	4.03	0.96	2.04	893	<1	1.59	84	930	8	0.08	<5	280	0.40	136
SC276968		38	3.95	1.05	2.09	608	<1	2.24	63	630	9	0.04	<5	360	0.47	149
SC276969		51	4.85	1.02	1.62	745	1	1.89	67	540	10	0.04	<5	345	0.51	155
SC276970		56	4.78	1.02	1.58	750	<1	1.86	62	560	14	0.04	<5	342	0.51	152
SC276971		46	5.15	0.98	1.75	850	1	1.89	71	56 0	15	0.04	<5	342	0.52	162
SC276972		46	4.98	0.97	1.69	808	1	1.85	67	510	10	0.04	<5	330	0.51	158
SC276973		50	5.16	1.03	1.54	1145	1	1.95	58	520	12	0.01	<5	375	0.59	163
SC276974		81	5.60	0.80	2.68	1115	1	1.94	126	500	19	0.01	<5	336	0.56	185
SC276975		46	3.89	1.17	2.27	634	<1	2.32	82	740	9	0.08	8	351	0.58	170
SC276976		60	4.67	1.12	2.21	722	<1	1.94	100	850	10	0.08	<5	316	0.48	149
SC276977		51	4.08	1.02	1.88	748	<1	1.82	88	970	12	0.13	6	315	0.44	128
SC276978		60	4.41	1.19	2.33	764	<1	2.06	99	960	13	0.10	<5	331	0.48	149
SC276979		47	4.03	1.38	1.51	782	<1	2.59	40	640	9	0.02	<5	447	0.50	129
SC276980		102	6.59	1.08	3.33	1575	<1	2.17	261	900	11	0.05	5	371	0.67	201

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 4 - C Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

				•	CERTIFICATE OF ANALYSIS	VA06083054
					OERTH TOATE OF ARALTOID	
	Method	ME-ICP61	ME-ICP61			
	Analyte	w	Zn			
Sample Description	Units LOR	ppm	ppm			
Sample Description		10	2			
SC276941		<10	86			
SC276942		<10	77			
SC276943		<10	83			
SC276944		<10	89			
SC276945		<10	84			
SC276946	.	<10	75			
SC276947	- ħ.	<10	74			
SC276948	1	<10	76			
SC276949	- 1	<10	154			
SC276950		<10	165		<u> </u>	
SC276951		<10	160			
SC276952		<10	83			
SC276953		<10	86			
SC276954		<10	87			
SC276955		<10	83			<u> </u>
SC276956		<10	81			
SC276957		<10	91	•		
SC276958		<10	91			
SC276959		<10	86			
SC276960		<10	90	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
SC276961		<10	72			
SC276962		<10	92			
SC276963		<10	101			
SC276964		<10	99			
SC276965		<10	100			
SC276966		<10	99			
SC276967		<10	100			
SC276968		<10	73			
SC276969 SC276970		<10 <10	105 107			
						<u> </u>
SC276971		<10	108			
SC276972 SC276973		<10	104			
SC276973 SC276974		<10 <10	102 97			
SC276974 SC276975		<10 <10	97 97			
				·		<u> </u>
SC276976		<10	127			
SC276977		<10	125			
SC276978 SC276979		<10 10	134 72			
SC276979 SC276980		10	72 105			
1 302/080U		I U	105			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 5 - A Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE OF ANALYSIS VA06083	305	Ŋ۶	6C	700	V	YSIS	ΙΔΙ	AN	OF	TF	CA'	IFI	CFRT	
---------------------------------	-----	----	----	-----	---	------	-----	----	----	----	-----	-----	------	--

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0,005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1
SC276981	_	0.52	0.009	<0.005	0.002	0.17	<0.5	7.47	11	560	1.1	<2	3.21	0.5	20	154
SC276982		0.78	0.047	<0.005	0.002	0.24	<0.5	7.65	11	540	0.9	<2	3.74	<0.5	19	220
SC276983	l	0.48	0.003	< 0.005	0.002	0.10	<0.5	8.41	<5	630	1.1	<2	3.06	<0.5	21	153
SC276984		0.44	0.001	< 0.005	0.002	0.08	<0.5	7.95	5	580	1.0	<2	3.12	<0.5	22	170
SC276985		0.46	0.001	<0.005	0.002	0.16	<0.5	8.12	8	660	1.1	<2	3.19	<0.5	20	127
SC276986		0.84	0.013	<0.005	0.002	0.21	<0.5	8.17	25	580	1.2	<2	3.65	<0.5	27	152
SC276987	- 1	0.54	< 0.001	0.013	0.003	0.20	<0.5	6.88	13	480	0.9	<2	3.57	<0.5	20	157
SC276988	1	0.36	0.003	0.010	0.004	0.20	<0.5	8.33	7	640	1.2	<2	3.89	<0.5	23	107
SC276989		0.36	0.002	< 0.005	0.006	0.17	<0.5	7.59	<5	590	1.3	<2	3.20	<0.5	23	114
SC276990		0.34	0.004	<0.005	0.001	0.12	<0.5	8.37	5	660	1.1	<2	2.76	0.5	24	119
SC276991	_	0.38	<0.001	<0.005	0.001	0.15	<0.5	8.33	13	670	1.2	<2	2.55	<0.5	21	98
SC276992		0.38	0.002	<0.005	0.001	0.11	<0.5	8.28	<5	640	1.2	<2	2.65	<0.5	24	105
SC276993		0.38	0.005	< 0.005	0.002	0.16	<0.5	8.00	10	690	1.2	<2	3.05	<0.5	22	113
SC276994		0.54	0.005	<0.005	0.003	0.15	<0.5	8.05	5	700	1.2	<2	2.92	<0.5	26	149
SC276995		0.50	0.002	<0.005	0.001	0.18	<0.5	8.21	18	640	1.1	<2	2.89	<0.5	21	136
SC276996		0.38	0.004	<0.005	0.004	0.24	<0.5	7.94	9	600	1.1	<2	3.17	<0.5	25	170
SC276997		0.28	0.002	< 0.005	0.003	0.33	<0.5	7.04	13	540	0.9	<2	3.37	0.5	21	134
SC276998		0.52	0.013	0.009	0.011	0.28	<0.5	7.76	37	430	0.7	<2	2.22	<0.5	45	725
SC276999		0.60	0.007	< 0.005	0.011	0.21	<0.5	8.01	10	620	1.1	<2	3.11	<0.5	31	255
SC277000		0.36	0.006	<0.005	0.006	0.31	<0.5	7.14	5	640	1.0	<2	3.15	<0.5	28	173
\$C277001		Not Recvd								-						

SC277001

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 5 - B Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

								CERTIFICATE OF ANALYSIS VA06083054								
Sample Description	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sr	Ti	V
	Units	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm
	LOR	1	0.01	0.01	0.01	5	1	0.01	1	10	2	0.01	5	1	0.01	1
SC276981		53	4.34	1.13	1.89	903	<1	2.39	51	940	4	0.01	<5	363	0.51	157
SC276982		42	4.61	1.11	2.05	1195	<1	2.26	49	780	4	0.06	<5	396	0.62	165
SC276983		39	4.89	1.13	1.75	895	<1	2.43	46	660	8	0.02	7	390	0.56	157
SC276984		31	4.63	1.17	1.92	752	<1	2.45	53	700	7	0.01	<5	375	0.55	163
SC276985		47	4.52	1.25	1.68	848	<1	2.37	45	780	10	0.02	<5	401	0.53	144
SC276986	\$ 1	59	6.08	1.10	2.35	1320	1	2.34	56	1380	10	0.04	7	401	0.67	185
SC276987		43	4.85	0.91	1.86	965	<1	1.98	51	1010	7	0.07	<5	355	0.56	150
SC276988		194	4.86	0.98	1.63	909	<1	2.20	56	1010	11	0.04	8	474	0.57	155
SC276989		301	4.61	0.91	1.35	982	<1	1.89	61	730	4	0.04	8	349	0.52	141
SC276990		40	5.13	1.08	1.48	854	<1	2.22	43	460	12	0.01	<5	372	0.62	160
SC276991		42	4.86	1.19	1.38	722	<1	2.26	40	440	9	0.01	<5	397	0.58	141
SC276992		40	4.80	1.13	1.40	668	1	2.24	38	430	10	0.01	<5	391	0.57	142
SC276993		77	4.84	1.06	1.42	899	<1	2.06	50	590	10	0.03	6	375	0.55	142
SC276994		71	4.94	1.08	1.72	903	<1	1.97	60	830	8	0.03	<5	319	0.56	156
SC276995		42	5.38	0.93	1.48	629	<1	2.09	50	390	8	0.02	5	338	0.64	168
SC276996		83	4.88	1.19	2.16	761	<1	2.05	77	810	11	0.05	7	305	0.55	172
SC276997		54	4.08	1.01	1.68	678	<1	1.85	53	890	5	0.07	<5	317	0.49	135
SC276998		67	6.22	1.13	3.64	1090	<1	1.40	291	680	30	0.06	<5	278	0.45	164
SC276999		155	5.22	1.20	2.65	814	<1	2.11	230	850	7	0.05	<5	335	0.51	154
SC277000		106	4.49	1.01	1.85	973	<1	1.83	185	790	9	0.06	<5	331	0.42	127

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 5 - C Total # Pages: 5 (A - C) Finalized Date: 26-SEP-2006

Account: UZJ

CERTIFICATE	OF ANALYSIS	VA06083054
OLIVIII IOAI E	OI AIAEIUU	

				,	L	 	AITALIS	<u> </u>	100003		
Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2							***********	
SC276981 SC276982 SC276983 SC276984 SC276985		<10 10 <10 <10 <10	70 98 77 68 75								
SC276986 SC276987 SC276988 SC276989 SC276990	* .	<10 <10 <10 <10 <10	114 91 93 66 100								
SC276991 SC276992 SC276993 SC276994 SC276995		<10 <10 <10 <10 <10	80 76 75 112 89			 					
SC276996 SC276997 SC276998 SC276999 SC277000		<10 <10 <10 10 <10	104 100 102 117 83								<u> </u>
SC277001									_		
	ļ										
		L				 					

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 3-OCT-2006

Account: UZJ

CERTIFICATE VA06092277

Project: #506 (ANT) P.O. No.: YK002

This report is for 33 Soil samples submitted to our lab in Vancouver, BC, Canada on

25-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	_

ANALYTICAL PROCEDURES								
ALS CODE	DESCRIPTION	INSTRUMENT						
S-IR08	Total Sulphur (Leco)	LECO						
ME-ICP61	27 element four acid ICP-AES	ICP-AES						
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES						

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.aischemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A
Total # Pages: 2 (A - C)
Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 (ANT)

CERTIFICATE	OF ANALYSIS	VA06092277
	OI AIAEIGIO	TAVOVELLI

								<u> </u>		<u> </u>		/ ///		¥7000		
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP6 Cr ppm 1
SC035451		0.26	<0.001	<0.005	0.002	0.10	<0.5	7.09	6	700	1.0	<2	2.83	<0.5	7	49
SC035452		0.22	< 0.001	< 0.005	< 0.001	0.05	<0.5	6.48	9	680	1.0	<2	2.74	<0.5	15	73
SC035453		0.40	0.002	0.011	0.001	0.06	<0.5	7.12	15	670	1.1	<2	2.38	1.0	29	114
SC035454		0.12	< 0.001	< 0.005	0.003	0.16	<0.5	2.89	22	420	0.5	2	2.92	0.7	38	41
SC035455	1	0.46	0.002	<0.005	0.001	0.01	<0.5	8.14	18	700	1.2	2	2.69	<0.5	21	137
SC035456		0.16	<0.001	<0.005	<0.001	0.05	<0.5	4.59	<5	380	0.7	<2	3.42	<0.5	7	71
SC035457	- 1	0.54	0.001	< 0.005	0.001	0.03	<0.5	7.45	5	620	1.0	<2	2.88	<0.5	18	125
SC035458	1	0.50	0.001	< 0.005	<0.001	0.02	<0.5	8.01	20	600	1.0	2	2.26	<0.5	21	150
SC035459		0.06	< 0.001	< 0.005	0.001	0.05	<0.5	2.38	<5	220	<0.5	<2	2.78	0.7	6	40
SC035460		0.38	< 0.001	<0.005	<0.001	0.03	<0.5	7.01	11	620	1.0	<2	3.02	<0.5	14	91
SC035461		0.50	<0.001	<0.005	<0.001	0.01	<0.5	8.08	7	710	1.2	<2	2.57	<0.5	16	74
SC035633		0.66	0.003	<0.005	0.016	0.03	<0.5	9.06	11	360	0.7	3	7.88	<0.5	53	38
SC035634		0.34	0.014	0.008	0.002	1.36	<0.5	8.65	7	950	1.0	5	1.35	<0.5	7	18
SC035635		0.56	0.005	<0.005	0.001	0.69	<0.5	7.52	<5	950	0.9	2	0.91	<0.5	6	38
SC035636		0.58	0.013	<0.005	0.002	0.80	0.8	8.84	5	1500	1.2	5	0.24	<0.5	4	12
SC035637	,	Not Recvd														
SC035639		0.52	0.029	<0.005	<0.001	0.94	<0.5	9.37	5	1340	1.2	5	0.15	<0.5	8	7
SC035640		Not Recvd														
SC035641		0.38	0.025	<0.005	0.002	0.20	<0.5	8.62	5	710	1.4	3	1.15	<0.5	29	62
SC035642		0.50	0.024	<0.005	0.002	1.63	0.5	8.24	8	590	1.1	<2	0.76	<0.5	4	29
SC035643		Not Recvd													_	<u>-</u>
SC035644		0.64	0.024	0.007	0.007	0.78	<0.5	7.93	11	1090	1.0	6	1.65	<0.5	19	139
SC035645		0.46	NSS	NSS	NSS	1.28	8.0	8.11	11	1270	1.3	4	1.22	<0.5	16	34
SC035646		0.64	0.024	<0.005	0.001	0.98	0.5	8.25	<5	1910	1.1	2	0.50	<0.5	2	17
SC035647		0.60	0.036	<0.005	0.008	0.22	1,1	7.78	44	1780	1.3	3	2.87	1.3	29	228
SC276743		0.52	0.001	<0.005	0.003	0.03	<0.5	7.61	13	630	1.0	<2	2.67	<0.5	17	162
SC276744		0.16	0.001	0.005	<0.001	0.05	<0.5	6.61	14	520	0.9	2	2.62	<0.5	16	195
SC276745		0.48	0.002	<0.005	0.015	0.05	<0.5	6.80	16	590	1.0	2	3.20	<0.5	23	209
SC276746		0.42	0.002	<0.005	0.001	0.01	<0.5	7.77	16	650	1.1	3	2.48	<0.5	22	121
SC276747		0.52	0.008	0.024	0.004	0.06	<0.5	6.65	14	520	0.9	2	2.61	<0.5	36	303
SC276748		0.10	<0.001	<0.005	0.007	0.15	<0.5	3.89	12	510	0.6	2	3.00	0.7	21	67
SC276749		0.40	0.005	< 0.005	< 0.001	0.02	0.6	7.95	101	590	1.1	<2	2.52	0.6	22	92
SC276750		0.48	0.001	< 0.005	0.002	0.04	<0.5	7.38	99	630	1.0	3	3.17	1.0	21	88

Comments: NSS is non-sufficient sample.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 (ANT)

										ERTIF	CATE C	F ANA	LYSIS	VA060	92277	
Sample Description	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sr	Ti	V
	Units	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm
	LOR	1	0.01	0.01	0.01	5	1	0.01	1	10	2	0.01	5	1	0.01	1
SC035451	·	63	2.99	1.50	0.95	401	<1	2.30	25	660	10	0.13	<5	508	0.39	79
SC035452		48	3.29	1.08	0.93	719	<1	1.83	32	750	9	0.05	<5	373	0.41	93
SC035453		66	4.64	1.14	1.55	1115	<1	1.72	41	850	21	0.06	<5	274	0.55	143
SC035454		47	4.91	0.36	0.55	6930	3	0.62	32	1660	4	0.26	<5	177	0.17	61
SC035455		61	4.97	1.19	1.73	692	<1	2.32	62	580	12	0.01	<5	364	0.56	155
SC035456		27	2.39	0.65	0.89	417	<1	1.24	24	960	4	0.12	<5	265	0.36	77
SC035457		49	4.26	1.10	1.48	735	<1	2.05	44	890	9	0.04	<5	350	0.53	139
SC035458		37	5.86	0.98	1.63	586	<1	2.02	50	450	11	0.01	<5	291	0.65	180
SC035459		19	1.53	0.38	0.59	490	<1	0.65	15	910	4	0.15	<5	159	0.19	45
SC035460		31	3.64	1.12	1.21	717	<1	2.05	32	790	9	0.04	<5	383	0.48	115
SC035461		31	4.10	1.42	1.19	654	<1	2.46	29	340	11	0.01	<5	459	0.49	112
SC035633		351	9.44	0.45	2.36	2090	<1	1.41	17	850	16	0.05	<5	716	0.46	364
SC035634		146	8.13	2.86	0.87	470	1	1.28	4	1380	14	1.64	<5	333	0.41	132
SC035635		61	5.49	2.11	1.04	305	3	1.33	12	850	16	0.87	<5	268	0.33	93
SC035636		173	8.02	3.16	1.00	257	2	1.00	2	1670	38	0.89	<5	156	0.30	125
SC035637 SC035639 SC035640 SC035641 SC035642		56 68 144	8.59 6.93 9.08	3.88 2.28 3.07	0.84 1.22 1.09	379 2190 326	4 6 15	0.66 1.09 1.16	1 23 6	1180 1000 2150	23 17 39	1.11 0.20 1.80	<5 <5 <5	135 184 371	0.26 0.39 0.38	100 130 138
SC035643 SC035644 SC035645 SC035646 SC035647		160 190 75 102	8.09 11.40 6.32 5.78	2.13 3.17 3.52 2.31	1.62 1.08 0.95 2.00	716 793 237 1575	5 15 22 7	1.35 0.97 1.12 0.78	39 12 4 138	1590 2270 1670 1110	51 167 25 34	0.91 1.44 1.12 0.25	<5 <5 <5 <5	349 474 279 112	0.37 0.44 0.42 0.47	138 136 124 224
SC276743 SC276744 SC276745 SC276746 SC276747		59 41 151 49 46	4.60 3.93 4.06 4.83 4.51	1.14 0.96 1.00 1.08 1.01	1.49 1.85 1.48 1.33 2.55	651 573 842 979 1210	<1 <1 <1 <1	1.97 1.82 1.76 2.06 1.87	88 90 256 50 207	480 730 670 430 710	9 9 11 9 7	0.03 0.06 0.07 0.01 0.03	<5 <5 <5 <5 <5	334 295 329 357 299	0.59 0.48 0.46 0.57 0.47	151 128 115 138 143
SC276748		51	3.79	0.54	0.78	6540	1	1.05	85	1010	4	0.25	<5	238	0.28	65
SC276749		161	5.04	1.04	1.31	834	1	2.14	42	270	10	0.02	<5	368	0.52	124
SC276750		47	5.34	1.17	1.41	1460	<1	2.02	46	510	16	0.05	<5	309	0.45	117

Comments: NSS is non-sufficient sample.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 (ANT)

•	-			A 304 02 10 WWW.alsoncitie		rioject. #500	(011)				
					ĺ		CERTIFICA	TE OF ANALY	/SIS	VA0609227	77
Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2								
				<u>-</u>		 -			<u> </u>		
SC035451 SC035452 SC035453 SC035454 SC035455		<10 <10 <10 <10 <10	157 62 520 119 81								
SC035456 SC035457 SC035458 SC035459 SC035460	* ,	<10 <10 <10 <10 <10	60 79 80 75 74								
SC035461 SC035633 SC035634 SC035635 SC035636		<10 <10 <10 <10 <10	72 81 52 45 70								
SC035637 SC035639 SC035640 SC035641 SC035642		<10 <10 <10	153 106 64		-						
SC035643 SC035644 SC035645 SC035646 SC035647		<10 <10 <10 <10	95 138 40 245								
SC276743 SC276744 SC276745 SC276746 SC276747		<10 <10 <10 <10 <10	86 79 69 84 138		-						
SC276748 SC276749 SC276750		<10 <10 <10	64 172 147								

Comments: NSS is non-sufficient sample.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 3-OCT-2006

Account: UZJ

CERTIFICATE VA06092314

Project: #506 (Pick) P.O. No.: YK003

This report is for 7 Rock samples submitted to our lab in Vancouver, BC, Canada on

25-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-MS81	38 element fusion ICP-MS	ICP-MS
ME-XRF06	Whole Rock Package - XRF	XRF
OA-GRA06	LOI for ME-XRF06	WST-SIM
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

^{u. A}" Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

These Con

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 (Pick)

										ERTIFI	CATE C	F ANA	LYSIS	VA060	92314	
ample Description	Method	WEI-21	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81
	Analyte	Recvd Wt.	Ag	Ba	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Ga	Gd	Hf	Ho
	Units	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.02	1	0.5	0.5	0.5	10	0.01	5	0.05	0.03	0.03	0.1	0.05	0.2	0.01
RC276233		0.78	<1	117.5	6.1	145.5	4100	1.90	390	0.91	0.54	0.31	5.3	0.93	0.8	0.21
RC276234		0.82	<1	675	5.2	54.3	650	1.09	85	2.25	1.56	0.46	14.5	1.65	1.0	0.52
RC276235		0.40	<1	13.2	1.2	130.0	4580	0.13	547	0.27	0.17	0.07	3.9	0.28	0.4	0.06
RC276236		0.80	<1	7.1	1.0	154.5	6060	0.16	433	0.31	0.19	0.07	6.9	0.27	0.4	0.07
RC276237		0.98	<1	12.9	2.4	157.5	4830	0.09	37	0.56	0.33	0.07	3.2	0.49	0.6	0.12
RC276238		0.42	<1	23.9	2.2	117.0	1920	1.70	40	0.68	0.44	0.24	7.5	0.63	0.5	0.15
RC276239		0.56	1	19.5	2.2	97.1	1700	2.04	22	0.72	0.39	0.20	6.8	0.56	0.6	0.15

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 (Pick)

Analyte Units La									<u> </u>	<u> </u>	10KJ			_			
Analyte Units La Lu Mo Nb Nd Ni Pb Pr Rb Sm Sn Sr Ta Tb Th									<u> </u>		ERTIF	CATE	F ANA	LYSIS	VA060	92314	
RC276234 2.3 0.25 <2 0.8 3.3 225 5 0.73 52.1 1.12 1 36.6 0.1 0.33 0.52 RC276235 0.5 0.03 <2 0.4 0.7 2900 8 0.16 1.6 0.23 <1 2.0 0.2 0.04 0.10 RC276236 <0.5 0.04 <2 0.4 0.6 2330 9 0.12 1.4 0.21 <1 1.6 0.1 0.05 0.11 RC276237 0.9 0.04 <2 0.9 1.5 2040 5 0.33 1.9 0.41 <1 1.5 0.2 0.09 0.14 RC276238 0.9 0.06 <2 0.7 1.4 1010 <5 0.30 4.8 0.45 <1 24.2 0.1 0.11 0.16	Sample Description	Analyte Units	La ppm	Lu ppm	Mo ppm	Nb ppm	Nd ppm	Ni ppm	Pb ppm	Pr ppm	Rb ppm	Şm ppm	Sn	Sr ppm	Та рртп	Tb ppm	ppm
₹ I	RC276234 RC276235 RC276236		2.3 0.5 <0.5	0.25 0.03 0.04	<2 <2 <2	0.8 0.4 0.4	3.3 0.7 0.6	225 2900 2330	5 8 9	0.73 0.16 0.12	52.1 1.6 1.4	1.12 0.23 0.21	<1	36.6 2.0 1.6	0.1 0.2 0.1	0.33 0.04 0.05	0.52 0.10 0.11
		\$ 1											<1 1				0.16 0.16

RC276239

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

<0.5

212 Brooksbank Avenue North Vancouver BC V7J 2C1

0.06

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

0.09

76

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

19

40.51

CERTIFICATE OF ANALYSIS VA06092314

7.60

12.15

7.84

24.10

Page: 2 - C Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

Account: UZJ

0.36

Project: #506 (Pick)

67

								<u> </u>	`						 -	
Sample Description	Method Analyte Units LOR	ME-MS81 Tl ppm 0.5	ME-M\$81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.5	ME-MS81 Yb ppm 0.03	ME-MS81 Zn ppm 5	ME-MS81 Zr ppm 2	ME-XRF06 SiO2 % 0.01	ME-XRF06 Al2O3 % 0.01	ME-XRF06 Fe2O3 % 0.01	ME-XRF06 CaO % 0.01	ME-XRF06 MgO % 0.01	ME-XRF06 Na2O % 0.01
RC276233		<0.5	0.09	0.15	<5	5	5.6	0.47	88	26	35.39	3.52	14.33	1.36	32.02	0.16
RC276234		0.6	0.24	0.23	235	1	14.3	1.56	72	29	46.30	15.26	10.00	5.42	11.81	1.81
RC276235		<0.5	0.03	0.05	<5	12	1.7	0.22	93	14	34.44	1.60	16.43	0.10	34.00	0.20
RC276236		<0.5	0.04	0.06	<5	2	2.0	0.22	106	13	35.86	1.48	12.45	0.07	36.31	0.18
RC276237		<0.5	0.05	0.09	<5	5	3.2	0.27	79	20	34.19	1.67	13.20	0.09	36.39	0.10
RC276238		0.5	0.06	0.08	60	3	3.9	0.38	79	14	38.52	6.82	14.46	5.65	24.99	0.20

0.39

4.0

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - D Total # Pages: 2 (A - D)

Finalized Date: 3-OCT-2006

Account: UZJ

Project: #506 (Pick)

									011 11 000 (1	,					
										ERTIF	CATE C	F ANAI	YSIS	VA06092314	
mple Description	Method Analyte Units LOR	ME-XRF06 K2O % 0.01	ME-XRF06 Cr2O3 % 0.01	ME-XRF06 TiO2 % 0.01	ME-XRF06 MnO % 0.01	ME-XRF06 P2O5 % 0.01	ME-XRF06 SrO % 0.01	ME-XRF06 BaO % 0.01	ME-XRF06 LOI % 0.01	ME-XRF06 Total % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	
C276233 C276234 C276235 C276236 C276237	-	0.05 3.08 0.05 0.04 0.07	0.57 0.08 0.65 0.75 0.66	0.35 0.44 0.11 0.16 0.17	0.18 0.21 0.12 0.16 0.22	0.06 0.07 0.02 0.04 0.03	0.01 0.01 <0.01 0.01 <0.01	<0.01 0.06 0.01 <0.01 <0.01	11.75 4.78 11.40 12.15 12.40	99.75 99.34 99.15 99.66 99.18	0.004 <0.001 0.007 0.012 0.034	0.050 <0.005 0.037 0.037 0.037	0.083 0.010 0.043 0.056 0.067	0.49 0.02 0.43 1.13 0.13	,
RC276238 RC276239	*	0.12 0.06	0.27 0.24	0.22 0.19	0.17 0.17	0.03 0.04	0.01 <0.01	<0.01 <0.01	7.82 6.71	99.27 99.99	0.001 0.001	0.017 0.012	0.013 0.014	0.02 0.02	_
	ļ														

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com LAVAL QC H7L 5A7

To: FALCONBRIDGE LTD - LAVAL EXPLORATION

3296. AVE FRANCIS-HUGHES

Page: 1 Finalized Date: 3-OCT-2006

Account: UZJ

CERTIFICATE VA06092275

Project: #506 (ANT)

P.O. No.:

This report is for 51 Rock samples submitted to our lab in Vancouver, BC, Canada on 25-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	
CRU-QC	Crushing QC Test	

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES
S-IR08	Total Sulphur (Leco)	LECO
As-AA61	Trace As - four acid digestion	AAS
V-AA61	Trace V - four-acid digestion	AAS
Cu-AA61	Trace Cu - four-acid digestion	AAS
Cu-AA62	Ore grade Cu - four acid / AAS	AAS
Cr-AA61	Trace Cr - four-acid digestion	AAS
Co-AA61	Trace Co - four-acid digestion	AAS
Ni-AA61	Trace Ni - four-acid digestion	AAS

To: FALCONBRIDGE LTD - LAVAL EXPLORATION

ATTN: RICHARD NIEMINEN 3296. AVE FRANCIS-HUGHES

LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

Place Con

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 3 (A) Finalized Date: 3-OCT-2006

Account: UZJ

CERTIFIC	ATF OF	ANAI VSIS	VA06092275

									CERTIFICATE OF ANALTSIS					VA06092275
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	As-AA61 As ppm 5	V-AA61 V Ppm 5	Cu-AA61 Cu ppm 2	Cu-AA62 Cu % 0.01	Cr-AA61 Cr ppm 2	Co-AA61 Co ppm 5	Ni-AA61 Ni ppm 5	
RC035651	_	0.52	<0.001	0.012	0.011	1.04	<5	257	18		293	84	84	· · · · · · · · · · · · · · · · · · ·
RC035652	l	0.42	0.002	0.008	0.002	0.38	<5	103	41		27	7	24	
RC035653		0.82	0.052	0.019	0.004	8.04	5	312	693		182	70	118	
RC035654		0.72	<0.001	<0.005	0.002	0.04 0.65	<5 <5	112	57		45 214	11 38	27 6 2	
RC035655		1.06	0.003	<0.005	0.002			315	95					
RC035656	- t	1.14	0.005	<0.005	0.001	1.44	< 5	92	12		13	12	5	
RC035657	-7 ,	0.88	0.012	0.007	0.001	1.78	<5 -	229	185		24	23	14	
RC035658	Ň	0.40	0.004	0.006	<0.001	0.56	7	100	34		31	13	12	
RC035659	•	0.88 1.06	<0.001 0.005	0.011 0.007	0.003 0.018	0.10 2.78	<5 <5	267 294	158 76		27 82	27 35	11 36	
RC035660														
RC035661		0.78	0.014	0.006	0.019	1.38	16	370	317		519	51	164	
RC035662		0.70	< 0.001	0.014	0.018	1.65	<5	319	30		390	27 27	108 <5	
RC276517		1.26 0.62	0.035 0.065	<0.005 0.007	0.001 0.001	0.50 2.67	19 305	119 106	1335 >10000	2.75	39 24	133	12	
RC276518 RC276519		1.16	0.065	< 0.007	<0.001	1.66	-505	208	2910	2.75	54	98	866	
												35	39	
RC276520		0.52	<0.001	0.006	<0.001	1.56 0.35	<5 <5	121	763		47 2230	35 113	39 1850	
RC276521		0.96	0.023 <0.001	0.105 0.026	0.203 0.028	0.35 0.11	<5 <5	139 91	462 55		3520	116	2180	
RC276522 RC276523		1.04 0.84	<0.001	0.026	0.028	0.11	<5	30	15		3490	142	2510	
RC276524		0.74	<0.001	0.003	0.061	0.06	<5	24	35		3450	138	2440	
RC276525		1.22	<0.001	<0.005	0.001	1.14	<u><</u> 5	<u></u> <5	9		54	<5	38	
RC276526		0.74	0.004	<0.005	0.001	0.16	63	309	176		199	37	100	
RC276527		1.74	<0.004	0.005	0.003	0.44	∞ <5	295	132		352	39	86	
RC276528		0.46	0.001	<0.005	<0.001	0.21	133	36	506		40	9	10	
RC276529		0.92	0.002	<0.005	<0.001	0.69	<5	152	290		55	14	17	
RC276530		0.88	0.003	<0.005	0.001	0.20	11	271	101		234	33	60	
RC276281		1.64	< 0.001	< 0.005	< 0.001	1.40	<5	186	42		70	10	23	
RC276282		5.00	< 0.001	< 0.005	< 0.001	2.15	<5	174	38		62	11	26	
RC276283		2.18	0.003	< 0.005	<0.001	1.62	<5	87	10		7	<5	<5	
RC276284		1.48	0.017	800.0	<0.001	2.56	<5	92	230		12	8	<5	
RC276285		1.30	0.007	<0.005	<0.001	1.79	< 5	88	25		7	5	<5	
RC276286		2.00	0.001	< 0.005	<0.001	1.26	<5	59	133		6	6	<5	
RC276287		2.28	0.014	<0.005	<0.001	1.19	<5	78	64		6	<5	<5	
RC276288		1.18	0.003	0.006	<0.001	1.80	<5	58	55		5	<5	<5	
RC276289		1.22	0.009	<0.005	0.001	0.41	<5	71	24		10	<5	<5_	
RC276290		1.16	0.402	0.005	<0.001	0.17	<5	<5	8		9	<5	<5	<u> </u>
RC276291		2.12	0.004	<0.005	0.002	0.42	<5	96	64		61	<5	11	
RC276292		1.82	<0.001	0.008	<0.001	0.92	<5	133	819		23	18	12	
RC276293		2.20	<0.001	0.008	0.002	1.12	168	123	63		52	10	31	
RC276232		1.46	0.001	<0.005	0.001	0.04	<5	41	23		8	<5	<5	·

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 3 - A Total # Pages: 3 (A) Finalized Date: 3-OCT-2006

Account: UZJ

										ERTIFI	CATE (F ANAL	YSIS	VA06092275
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	S-IR08 S % 0.01	As-AA61 As ppm 5	V-AA61 V ppm 5	Cu-AA61 Cu ppm 2	Cu-AA62 Cu % 0.01	Cr-AA61 Cr ppm 2	Co-AA61 Co ppm 5	Ni-AA61 Ni ppm 5	
RC276270 RC276271 RC276272 RC276273 RC276274		1.56 1.32 1.08 1.20 1.60	0.003 <0.001 <0.001 <0.001 <0.001	<0.005 <0.005 <0.005 <0.005 <0.005	0.001 0.001 0.001 0.002 0.002	0.13 0.03 0.19 0.10 0.13	504 13 <5 <5 <5	<5 <5 19 147 83	1485 25 38 73 30		18 5 4 5 13	<5 <5 41 48 50	<5 <5 <5 <5 <5	
RC276275 RC276276 RC276277 RC276278 RC276279	* ,	1.36 1.04 1.50 1.34 1.28	0.003 <0.001 <0.001 0.001 <0.001	<0.005 <0.005 <0.005 <0.005 <0.005	0.002 0.001 0.001 0.003 0.002	2.13 0.15 0.21 0.14 0.02	10 <5 13 12 44	77 132 7 8 6	2330 34 125 22 11		17 17 7 3 3	11 52 12 13 <5	5 10 <5 <5 <5	
RC276280		1.40	<0.001	<0.005	0.001	0.13	<5	381	95		26	56	32	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 11-OCT-2006

Account: UZJ

CERTIFICATE VA06095047

Project: 505 (ONION)

P.O. No.:

This report is for 6 Rock samples submitted to our lab in Vancouver, BC, Canada on 5-SEP-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize split to 85% <75 um							

	ANALYTICAL PROCEDURES									
ALS CODE	DESCRIPTION	INSTRUMENT								
Cu-AA62	Ore grade Cu - four acid / AAS	AAS								
Ni-AA61	Trace Ni - four-acid digestion	AAS								
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES								
Co-AA61	Trace Co - four-acid digestion	AAS								
Cr-AA61	Trace Cr - four-acid digestion	AAS								
Cu-AA61	Trace Cu - four-acid digestion	AAS								
V-AA61	Trace V - four-acid digestion	AAS								
As-AA61	Trace As - four acid digestion	AAS								
S-IR08	Total Sulphur (Leco)	LECO								

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A)

Finalized Date: 11-OCT-2006

Account: UZJ

Project: 505 (ONION)

CERTIFIC	ATF OF	ANAI YSIS	VA06095047
OLIVIII			Y MOUUUUUTI

								<u> </u>		CERTIFI	CATE	OF ANA	LYSIS	VA06095047
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	Cu-AA62 Cu % 0.01	Ni-AA61 Ni ppm 5	Co-AA61 Co ppm 5	Cr-AA61 Cr ppm 2	Cu-AA61 Cu ppm 2	V-AA61 V ppm 5	As-AA61 As ppm 5	S-IR08 S % 0.01	
276551 276552 276785 276794 276795		0.62 0.78 1.58 1.02 0.88	0.002 0.008 0.002 0.004 0.034	<0.005 <0.005 0.009 <0.005 <0.005	0.001 0.001 0.009 0.002 0.002		186 13 80 12 <5	23 8 26 8 10	440 29 187 22 20	50 49 47 20 499	225 37 188 65 252	<5 <5 <5 <5 <5	1.06 4.62 0.09 1.34 2.18	
276795		0.88			0.002	2.01			121		252 256	<5 <5	2.18 0.10	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 3-OCT-2006

Account: UZJ

CERTIFICATE VA06092313

Project: #506 (Pick)										
P.O. No.: YK003										
This report is for 7 Rock samples submitted to our lab in Vancouver, BC, Canada on 25-AUG-2006.										
The following have access to data associated with this certificate:										
RIÇHARD NIEMINEN										
*										

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

ANALYTICAL PROCEDURES									
ALS CODE	DESCRIPTION	INSTRUMENT							
Ni-AA61	Trace Ni - four-acid digestion	AAS							
Co-AA61	Trace Co - four-acid digestion	AAS							
Cr-AA61	Trace Cr - four-acid digestion	AAS							
Cu-AA61	Trace Cu - four-acid digestion	AAS							
V-AA61	Trace V - four-acid digestion	AAS							
As-AA61	Trace As - four acid digestion	AAS							
S-IR08	Total Sulphur (Leco)	LECO							
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES							

To: FALCONBRIDGE LTD - LAVAL EXPLORATION ATTN: RICHARD NIEMINEN

3296, AVE FRANCIS-HUGHES

LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - A Total # Pages: 2 (A)

Finalized Date: 3-OCT-2006

Account: UZJ

	Phone: 604	984 0221 Fa	x: 604 984 02	18 www.als	chemex.co	m į	Ргојес	ct: #506 (P							
									C	ERTIFI	CATE O	F ANALYSIS	VA06092313		
mple Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	Ni-AA61 Ni ppm 5	Co-AA61 Co ppm 5	Cr-AA61 Cr ppm 2	Cu-AA61 Cu ppm 2	V-AA61 V ppm 5	As-AA61 As ppm 5	S-IR08 S % 0.01			
C276233 C276234 C276235 C276236 C276237		1.08 0.96 0.70 0.94 0.70	0.008 0.006 0.010 0.039 0.015	0.037 0.012 0.035 0.047 0.071	0.047 0.019 0.046 0.061 0.128	2200 188 3750 2090 2100	123 57 240 121 140	4440 348 3090 3100 3560	246 172 610 173 52	114 294 57 61 65	18 25 <5 11 5	0.41 0.19 2.49 0.54 0.10			
C276238 C276239		1.00 1.30	0.002 0.001	0.018 0.016	0.010 0.014	823 757	96 93	1340 1170	29 22	120 120	6 8	0.02			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES **LAVAL QC H7L 5A7**

Page: 1 Finalized Date: 3-OCT-2006

Account: UZJ

CERTIFICATE VA06092311

Project: #506(ANT)

P.O. No.:

This report is for 19 Rock samples submitted to our lab in Vancouver, BC, Canada on 25-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

SAMPLE PREPARATION									
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LOG-22	Sample login - Rcd w/o BarCode								
CRU-31	Fine crushing - 70% <2mm								
SPL-21	Split sample - riffle splitter								
PUL-31	Pulverize split to 85% <75 um								
SPL-21d	Split sample - duplicate								
LOG-24	Putp Login - Rcd w/o Barcode								
PUL-31d	Pulverize Split - duplicate								

	ANALYTICAL PROCEDURES									
ALS CODE	DESCRIPTION	INSTRUMENT								
OA-GRA06	LOI for ME-XRF06	WST-SIM								
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES								
ME-MS81	38 element fusion ICP-MS	ICP-MS								
S-IR08	Total Sulphur (Leco)	LECO								
ME-XRF06	Whole Rock Package - XRF	XRF								

To: FALCONBRIDGE LTD - LAVAL EXPLORATION

ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES

LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

الغري والراب والمرابي والمعاملين والمعاملين والمستوعد ومدارات والشيار والمرابي

Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

Account: UZJ

Sample Description	Method	WEI-21	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06	ME-XRF06
	Analyte	Recvd Wt.	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5	SrO	BaO	LOI
	Units	kg	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	LOR	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
RC276531		0.58	31.76	1.03	11.30	0.24	36.16	0.20	0.05	0.65	0.13	0.15	0.02	0.01	<0.01	17.85
RC276532		0.86	32.00	0.61	14.27	0.09	37.09	0.24	0.02	0.97	0.07	0.19	0.02	<0.01	<0.01	14.10
RC276533		0.70	32.47	0.60	12.53	0.28	38.14	0.21	0.02	0.91	0.06	0.19	0.01	<0.01	<0.01	14.15
RC276534		0.80	33.26	0.84	13.18	0.32	36.78	0.23	0.03	0.95	0.12	0.18	0.03	<0.01	<0.01	13.50
RC276535		0.78	32.98	0.62	12.54	0.08	37.82	0.24	0.02	0.68	0.07	0.16	0.03	<0.01	<0.01	14.25
RC276272		0.66	46.78	12.39	19.88	6.39	3.06	2.92	0.58	<0.01	1.65	0.35	0.87	0.02	0.04	4.00
RC276273		0.48	44.82	12.42	19.46	8.63	4.40	2.19	0.55	<0.01	2.50	0.29	0.58	0.03	0.02	3.13
RC276276		0.44	44.82	13.75	19.75	8.36	3.80	2.42	0.50	<0.01	1.96	0.30	1.27	0.03	0.03	1.85
RC276277		0.44	46.99	10.98	23.51	6.60	1.09	2.22	0.71	<0.01	1.83	0.48	0.61	0.02	0.04	3.95
RC276279		0.52	47.67	10.79	23.01	6.58	1.03	2.32	0.80	<0.01	1.84	0.41	0.62	0.03	0.04	3.50
RC276292		0.70	63.70	14.02	5.76	3.91	2.11	4.25	0.88	<0.01	0.45	0.09	0.26	0.04	0.08	3.55
RC276287		0.74	54.13	17.53	8.36	4.27	4.51	4.24	1.30	<0.01	0.62	0.09	0.09	0.04	0.09	4.54
502714		0.52	55.20	17.30	8.32	4.29	4.48	4.23	1.36	<0.01	0.62	0.08	0.11	0.04	0.09	3.97
6682533		<0.02	67.72	14.10	6.11	0.49	1.65	2.39	2.75	<0.01	0.44	0.04	0.11	0.02	0.10	4.04
507150		0.40	49.76	13.27	10.52	9.69	8.69	3.51	0.58	0.06	0.68	0.13	0.15	0.03	0.02	1.50
6680950		<0.02	49.96	13.38	10.73	9.65	8.77	3.57	0.58	0.06	0.66	0.14	0.16	0.03	0.02	1.54
5076360		0.66	51.22	16.29	14.44	5.27	5.46	4.11	0.53	<0.01	1.21	0.21	0.53	0.06	0.07	0.42
6680981		<0.02	51.19	16.44	14.42	5.22	5.39	4.03	0.52	<0.01	1.17	0.21	0.54	0.05	0.07	0.34
RC276285		0.28	64.64	17.37	3.74	0.62	2.05	4.02	2.64	0.01	0.50	0.03	0.09	0.04	0.08	4.09

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

TO SERVICE THE COLUMN SERVICES OF THE COLUMN SERVICES.

Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

Account: UZJ

									C	ERTIFI	CATE C	F ANA	YSIS	VA0609		
Sample Description	Method	ME-XRF06	PGM-ICP23	PGM-ICP23	PGM-ICP23	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81
	Analyte	Total	Au	Pt	Pd	Ag	Ba	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Ga
	Units	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pprn	ppm	ppm	ppm
	LOR	0.01	0.001	0.005	0.001	1	0.5	0.5	0.5	10	0.01	5	0.05	0.03	0.03	0.1
RC276531		99.55	<0.001	0.024	0.011	<1	13.2	1.6	127.0	4660	0.25	5	0.34	0.19	0.07	2.3
RC276532		99.69	0.001	0.017	0.011	<1	3.7	0.8	148.5	5990	0.02	22	0.11	0.07	0.04	1.8
RC276533		99.57	<0.001	0.024	0.009	<1	3.5	0.9	155.5	6240	0.02	17	0.12	0.08	0.03	1.8
RC276534		99.41	0.001	0.019	0.006	<1	2.5	1.1	138.0	6820	0.03	29	0.13	0.09	0.06	2.2
RC276535		99.49	<0.001	0.107	0.069	<1	2.6	0.7	145.5	4930	0.02	17	0.16	0.08	<0.03	1.6
RC276272		98.93	<0.001	0.007	0.002	<1	232	28.1	41.3	50	0.55	22	6.44	3.99	1.57	16.7
RC276273		99.02	<0.001	0.007	0.003	<1	180.0	18.5	58.8	30	0.15	100	4.80	3.01	1.33	19.8
RC276276		98.84	<0.001	<0.005	<0.001	<1	198.0	25.1	61.8	30	0.28	32	6.14	3.65	1.87	18.9
RC276277		99.04	<0.001	<0.005	<0.001	<1	327	32.0	13.3	10	0.55	18	7.18	4.56	1.94	17.2
RC276279		98.62	<0.001	<0.005	<0.001	<1	284	33.2	13.5	10	0.47	19	7.52	4.67	1.93	17.5
RC276292		99.10	<0.001	<0.005	0.002	<1	678	48.1	24.3	20	0.35	606	2.91	1.73	1.03	13.3
RC276287		99.80	0.006	<0.005	0.003	<1	963	39.5	7.5	10	0.43	190	3.99	2.69	0.93	14.9
502714		100.10	<0.001	<0.005	0.003	<1	794	20.1	19.8	30	1.26	50	3.29	2.23	0.80	16.0
6682533		99.95	<0.001	<0.005	0.002	<1	826	19.7	20.8	20	1.31	54	3.36	2.28	0.79	16.1
507150		98.60	<0.001	0.006	0.007	<1	257	17.9	42.2	490	0.11	<5	2.82	1.92	0.79	16.7
6680950		99.26	<0.001	0.005	0.008	<1	265	17.6	43.1	500	0.14	<5	2.91	1.96	0.79	17.0
5076360		99.84	0.002	<0.005	0.013	<1	783	38.2	39.7	10	0.77	49	4.20	2.51	1.80	19.0
6680981		99.60	0.001	0.011	0.015	<1	807	39.8	41.7	10	0.79	49	4.25	2.51	1.84	19.2
RC276285		99.92	0.005	<0.005	<0.001	<1	780	50.4	6.4	20	0.64	10	2.19	1.29	0.92	17.3

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C
Total # Pages: 2 (A - D)
Finalized Date: 3-OCT-2006

Account: UZJ

										ERTIFI	CATE C	F ANA	LYSIS	VA060		
Sample Description	Method Analyte Units LOR	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.5	ME-MS81 Lu ppm 0.01	ME-MS81 Mo ppm 2	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1	ME-MS81 Ni ppm 5	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sri pprn 1	ME-MS81 Sr ppm 0.1
RC276531 RC276532 RC276533 RC276534 RC276535		0.35 0.13 0.12 0.14 0.10	0.3 0.2 0.2 0.2 0.2	0.07 0.03 0.02 0.03 0.03	0.5 <0.5 <0.5 <0.5 <0.5	0.04 0.02 0.02 0.02 0.02	<2 <2 <2 <2 <2 <2	0.6 0.2 0.3 0.3 0.3	1.0 0.3 0.3 0.5 0.5	2390 2470 2670 2420 2580	<5 <5 <5 <5 <5	0.21 0.08 0.09 0.12 0.11	1.5 0.3 0.2 0.3 0.3	0.27 0.11 0.09 0.16 0.09	<1 <1 <1 <1 <1	21.2 3.3 3.5 3.4 2.7
RC276272 RC276273 RC276276 RC276277 RC276279	## 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.98 4.04 5.93 6.67 6.70	1.9 2.1 1.5 2.4 2.6	1.45 1.09 1.37 1.63 1.70	11.9 8.0 10.4 14.1 14.6	0.59 0.47 0.49 0.71 0.74	<2 <2 <2 <2 <2 <2	6.0 6.9 5.2 9.7 9.7	17.4 11.5 17.0 19.7 20.2	41 24 34 <5 6	<5 6 8 10 8	3.89 2.54 3.66 4.41 4.63	9.5 9.0 8.0 11.9 14.5	4.58 3.20 4.73 5.42 5.42	1 1 1 1	168.5 273 308 234 228
RC276292 RC276287 502714 6682533 507150		3.73 3.94 2.91 2.93 2.53	2.8 4.6 2.5 2.7 1.5	0.59 0.93 0.75 0.79 0.67	25.2 19.3 9.3 9.1 8.5	0.28 0.46 0.34 0.38 0.32	<2 <2 <2 <2 <2 <2	5.9 4.2 2.2 2.3 4.8	20.6 17.6 10.3 10.2 8.4	14 6 12 14 185	5 9 9 7 10	5.80 4.64 2.53 2.49 2.08	21.0 53.1 19.8 20.4 5.1	3.79 3.84 2.68 2.60 1.93	1 2 1 1	330 119.0 390 398 263
6680950 5076360 6680981 RC276285		2.52 5.15 5.20 3.54	1.4 0.9 0.9 3.2	0.70 0.89 0.90 0.43	8.6 18.3 18.9 27.1	0.32 0.33 0.33 0.27	<2 <2 <2 <2 <2	4.8 2.3 2.3 6.4	8.4 21.0 22.0 20.9	192 12 15 6	16 9 6 7	2.12 4.96 5.16 5.80	5.6 3.9 3.7 61.8	1.98 4.80 5.02 3.80	1 1 1 1	262 530 539 325

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

Account: UZJ

										ERTIFI	CATE C	F ANA	LYSIS	VA06092311
	Method Analyte Units	ME-MS81 Ta ppm	ME-MS81 Tb	ME-MS81 Th	ME-MS81 Ti ppm	ME-MS81 Tm ppm	ME-MS81 U ppm	ME-MS81 V ppm	ME-MS81 W	ME-M\$81 Y Ppm	ME-MS81 Yb ppm	ME-MS81 Zn ppm	ME-MS81 Zr ppm	S-IR08 S %
ample Description	LOR	0.1	0.01	0.05	0.5	0.01	0.05	5	1	0.5	0.03	5	2	0.01
RC276531		0.1	0.05	0.12	0.5	0.03	<0.05	<5	3	1.7	0.18	71	11	0.02
RC276532		0.1	0.02	0.06	<0.5	0.01	<0.05	<5	4	0.6	0.11	71	5	0.01
RC276533		0.1	0.02	0.06	<0.5	0.02	<0.05	<5	3	0.6	0.10	71	4	0.01
RC276534		0.1	0.03	0.06	<0.5	0.01	<0.05	<5	2	0.7	0.10	65	4	0.01
RC276535		0.1	0.02	0.06	<0.5	0.02	<0.05	<5	2	0.6	0.09	61	4	0.01
RC276272		0.5	1.05	0.96	0.5	0.61	0.38	9	6	39.7	3.75	173	57	0.14
RC276273	3	0.5	0.74	0.82	0.5	0.47	0.34	322	3	30.0	2.84	164	68	0.20
RC276276	4	0.4	1.02	0.78	0.5	0.53	0.30	77	2	37.2	3.00	150	44	0.16
RC276277		0.7	1.15	1.09	<0.5	0.69	0.45	<5	2	45.0	4.44	205	73	0.17
RC276279		0.7	1.19	1.38	0.5	0.74	0.48	8	1	46.2	4.65	198	77	0.17
RC276292		0.5	0.54	5.51	0.5	0.28	2.04	104	5	16.6	1.81	56	102	1.63
RC276287		0.4	0.68	4.04	0.7	0.43	1.92	54	3	25.7	2.97	62	147	3.23
502714		0.2	0.52	2.05	0.5	0.35	0.99	198	3	21.4	2.32	83	81	0.02
6682533		0.2	0.53	2.08	0.5	0.36	1.04	206	4	22.0	2.37	82	83	0.02
507150		0.4	0.44	0.75	0.5	0.30	0.37	266	2	18.3	1.91	33	50	0.01
6680950		0.4	0.46	0.75	<0.5	0.29	0.41	270	<1	18.5	1.99	34	46	0.01
5076360		0.2	0.75	0.47	0.5	0.36	0.22	443	2	24.6	2.15	105	27	0.02
6680981		0.2	0.79	0.47	< 0.5	0.36	0.21	462	3	25.0	2.15	107	26	0.01
RC276285		0.5	0.46	4.18	0.7	0.21	2.01	105	1	11.8	1.46	34	114	1.83

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALŞ Çanada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 1 Finalized Date: 3-OCT-2006

Account: UZJ

CERTIFICATE VA06092312

Project: #505/Canalask

P.O. No.:

This report is for 9 Rock samples submitted to our lab in Vancouver, BC, Canada on 25-AUG-2006.

The following have access to data associated with this certificate:

CHRIS COCKBURN

RICHARD NIEMINEN

_

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
LOG-24	Pulp Login - Rcd w/o Barcode							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize split to 85% <75 um							
PUL-31d	Pulverize Split - duplicate							
SPL-21d	Split sample - duplicate							

ANALYTICAL PROCEDURES									
DESCRIPTION	INSTRUMENT								
Pt, Pd, Au 30g FA ICP	ICP-AES								
38 element fusion ICP-MS	ICP-MS								
Total Sulphur (Leco)	LECO								
Whole Rock Package - XRF	XRF								
LOI for ME-XRF06	WST-SIM								
	DESCRIPTION Pt, Pd, Au 30g FA ICP 38 element fusion ICP-MS Total Sulphur (Leco) Whole Rock Package - XRF								

To: FALCONBRIDGE LTD - LAVAL EXPLORATION

ATTN: RICHARD NIEMINEN 3296, AVE FRANCIS-HUGHES

LAVAL QC H7L 5A7

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Sample Description

526593

6868638

XLT-SW

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

<0.02

0.22

< 0.02

0.34

49.45

48.44

48.68

65.57

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

14.52

19.03

19.32

15.36

11.44

10.14

10.23

4.68

10.94

3.80

3.74

1.36

6.33

6.55

6.47

1.90

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

0.03

0.01

0.01

< 0.01

1.23

1.07

1.05

0.38

CERTIFICATE OF ANALYSIS VA06092312

0.20

0.18

0.18

0.13

0.14

0.25

0.23

0.07

0.04

0.04

0.04

0.02

Page: 2 - A Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

0.02

0.10

0.09

0.01

Account: UZJ

2.83

4.01

3.91

2.58

Project: #505/Canalask

								<u> </u>									
1	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-XRF06 SiO2 % 0.01	ME-XRF06 Al2O3 % 0.01	ME-XRF06 Fe2O3 % 0.01	ME-XRF06 CaO % 0.01	ME-XRF06 MgO % 0.01	ME-XRF06 Na2O % 0.01	ME-XRF06 K2O % 0.01	ME-XRF06 Cr2O3 % 0.01	ME-XRF06 TiO2 % 0.01	ME-XRF06 MnO % 0.01	ME-XRF06 P2O5 % 0.01	ME-XRF06 SrO % 0.01	ME-XRF06 BaO % 0.01	ME-XRF06 LOI % 0.01	
		0.88	35.83	0.53	15.13	0.49	43,32	0.28	0.03	0.70	0.06	0.20	0.03	<0.01	<0.01	2.64	
		<0.02	36.00	0.52	15.12	0.46	43.14	0.20	0.03	0.66	0.06	0.19	0.02	0.01	< 0.01	2.65	
		0.86	65.68	14.30	4.70	1.12	2.99	5.34	1.25	0.03	0.42	0.12	0.11	0.03	0.06	2.39	
		< 0.02	66.64	14.73	4.66	1.15	2.56	5.44	1.26	0.02	0.38	0.12	0.11	0.02	0.07	2.36	
	1	0.74	49.29	14.41	11.42	10.92	6.29	2.08	0.50	0.03	1.23	0.20	0.13	0.04	0.01	2.83	

0.48

2.79

2.83

0.54

2.12

3.05

3.08

6.53

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Control of the terminal president of the control of

Page: 2 - B Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #505/Canalask

								CERTIFICATE OF ANALYSIS						VA06092312		
Sample Description	Method Analyte Units LOR	ME-XRF06 Total % 0.01	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME-MS81 Ag ppm 1	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.5	ME-MS81 Co ppm 0.5	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Cu ppm 5	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1
525827		99.21	0.007	0.062	0.080	<1	7.6	0.9	152.0	4920	0.03	203	0.10	0.05	0.04	1.5
6867863		99.04	0.006	0.067	0.089	<1	6.4	0.7	156.5	5040	0.02	183	0.08	0.05	0.03	1.5
525897		98.52	0.006	0.005	0.005	<1	585	17.0	12.2	170	0.30	19	1.82	1.16	0.42	14.0
6868068		99.54	0.003	< 0.005	0.004	<1	591	17.6	10.6	120	0.29	16	1.86	1.13	0.43	14.1
526021		99.39	0.002	0.006	0.005	<1	142.0	18.5	41.5	190	0.19	110	4.09	2.37	1.21	19.7
6868079	_	99.77	<0.001	0.010	0.005	<1	143.0	18.9	41.7	190	0.17	111	4.13	2.44	1.25	20.0
526593	· .	99.45	< 0.001	< 0.005	0.003	<1	906	31.2	29.9	120	1.03	30	4.09	2.55	1.01	21.5
6868638	1	99.84	< 0.001	< 0.005	<0.001	<1	895	31.4	30.2	110	1.06	29	4.06	2.52	1.03	21.5
XLT-SW		99.13	0.002	< 0.005	0.002	<1	120.0	9.5	10.2	30	0.23	12	1.52	1.09	0.38	14.5

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - C Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #505/Canalask

										ERTIFI	CATE C	LYSIS	VA06092312			
Sample Description	Method Analyte Units LOR	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.5	ME-MS81 Lu PPm 0,01	ME-MS81 Mo ppm 2	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1	ME-MS81 Ni ppm 5	ME-M\$81 Pb ppm 5	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1
525827 6867863 525897 6868068 526021		0.08 0.13 1.90 1.94 3.90	0.2 0.2 2.9 3.3 2.6	0.02 0.03 0.41 0.43 0.89	<0.5 <0.5 9.2 9.4 8.2	0.02 0.02 0.20 0.20 0.34	<2 <2 <2 <2 <2 <2	0.2 0.2 2.7 2.7 5.6	0.3 0.3 7.7 7.9 10.9	3040 3150 135 102 80	6 5 9 13 16	0.08 0.07 2.00 2.05 2.56	0.6 0.4 19.7 19.3 10.4	0.10 0.07 1.74 1.77 3.13	<1 1 1 1	4.5 3.9 147.5 146.0 361
6868079 526593 6868638 XLT-SW	* .	3.84 4.11 4.21 1.35	2.5 4.0 4.4 2.0	0.89 0.89 0.89 0.37	8.6 14.7 14.5 4.9	0.33 0.37 0.39 0.25	<2 <2 <2 <2 <2	5.4 7.9 7.9 1.8	11.4 15.9 16.3 4.8	78 53 50 14	9 7 9 5	2.58 4.02 3.98 1.23	10.5 64.1 62.6 11.4	3.07 3.86 3.75 1.16	1 1 1 1	360 342 347 97.9
		:														

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: FALCONBRIDGE LTD - LAVAL EXPLORATION 3296, AVE FRANCIS-HUGHES LAVAL QC H7L 5A7

Page: 2 - D Total # Pages: 2 (A - D) Finalized Date: 3-OCT-2006

Account: UZJ

Project: #505/Canalask

Marthod Analyte Units Ta Tb Th Ti Tm U V W Y Yb Zn Zr S S S S S S S S S										C	VA06092312				
6867863 0.1 0.02 0.05 <0.5 0.01 <0.05 <5 2 0.5 0.09 80 3 0.05 525897 0.2 0.32 2.61 0.5 0.19 1.47 47 2 10.5 1.17 52 109 0.12 6868068 0.2 0.31 2.61 0.5 0.19 1.44 47 5 10.7 1.17 54 126 0.10 526021 0.4 0.70 1.39 <0.5 0.35 0.60 315 2 23.3 2.14 97 82 0.02 6868079 0.4 0.69 1.43 <0.5 0.36 0.56 321 2 23.7 2.16 96 82 0.02 526593 0.8 0.69 3.98 0.6 0.37 1.83 258 <1 24.2 2.42 113 137 0.01 6868638 0.7 0.70 4.05 0.6 0.37 1.84 259 2 24.0 2.35 112 153 0.01 <th>ample Description</th> <th>Analyte Units</th> <th>Ta ppm</th> <th>Tb ppm</th> <th>Th ppm</th> <th>TI ppm</th> <th>Tm ppm</th> <th>U ppm</th> <th>V ppm</th> <th>W</th> <th>Y ppm</th> <th>Yb ppm</th> <th>Zn ppm</th> <th>Zr ppm</th> <th>S %</th>	ample Description	Analyte Units	Ta ppm	Tb ppm	Th ppm	TI ppm	Tm ppm	U ppm	V ppm	W	Y ppm	Yb ppm	Zn ppm	Zr ppm	S %
26593 . 0.8 0.69 3.98 0.6 0.37 1.83 258 <1 24.2 2.42 113 137 0.01 868638 . 0.7 0.70 4.05 0.6 0.37 1.84 259 2 24.0 2.35 112 153 0.01	867863 25897 868068		0.1 0.2 0.2	0.02 0.32 0.31	0.05 2.61 2.61	<0.5 0.5 0.5	0.01 0.19 0.19	<0.05 1.47 1.44	<5 47 47	2 5	0.5 10.5 10.7	0.09 1.17 1.17	80 52 54	3 109 126	0.05 0.12 0.10
	6868079 526593 6868638	\$ 1	0.8 0.7	0.69 0.70	3.98 4.05	0.6 0.6	0.37 0.37	1.83 1.84	258 259	<1 2	24.2 24.0	2.42 2.35	113 112	137 153	0.01 0.01

Appendix 8a: Expenditures, ANT Claim Block:

ANT 1 - 330, 332, 334, 336 Claims

Xstrata plc (Falconbridge Ltd.), August, 2006

Type of Expenditure	No. of units	Pric	ce per unit	Tot	al Expenditure
Rock Assay Samples	33	\$	29.41	\$	970.53
Rock: Whole Rock Analysis	6	\$	60.03	\$	360.18
Soil Sampling	14	\$	26.78	\$	374.92
Silt Sampling	191	\$	26.78	\$	5,114.98
Shipping				\$	382.00
Wages: Geologist 1	11 person-days	\$	600.00	\$	6,600.00
Geologist 2	2 person-days	\$	300.00	\$	600.00
Technician 1	6 person-days	\$	300.00	\$	1,800.00
Technician 2	7 person-days	\$	230.00	\$	1,610.00
Technician 3	10 person-days	\$	200.00	\$	2,000.00
Accommodations	34 person-days	\$	150.00	\$	5,100.00
Helicopter Costs (incl fuel)	23.0 hours	\$	1,150.00	\$	26,450.00
Pre-project preparation:				\$	1,200.00
Data compilation, report writing			_	\$	4,000.00
_		Tota	ıl:	\$	56,562.61

N.B. All field expenditures incurred from July 19 - August 24, 2006

Appendix 8b: Expenditures, HAND et al Claim Block:

(part of POLE grid area)

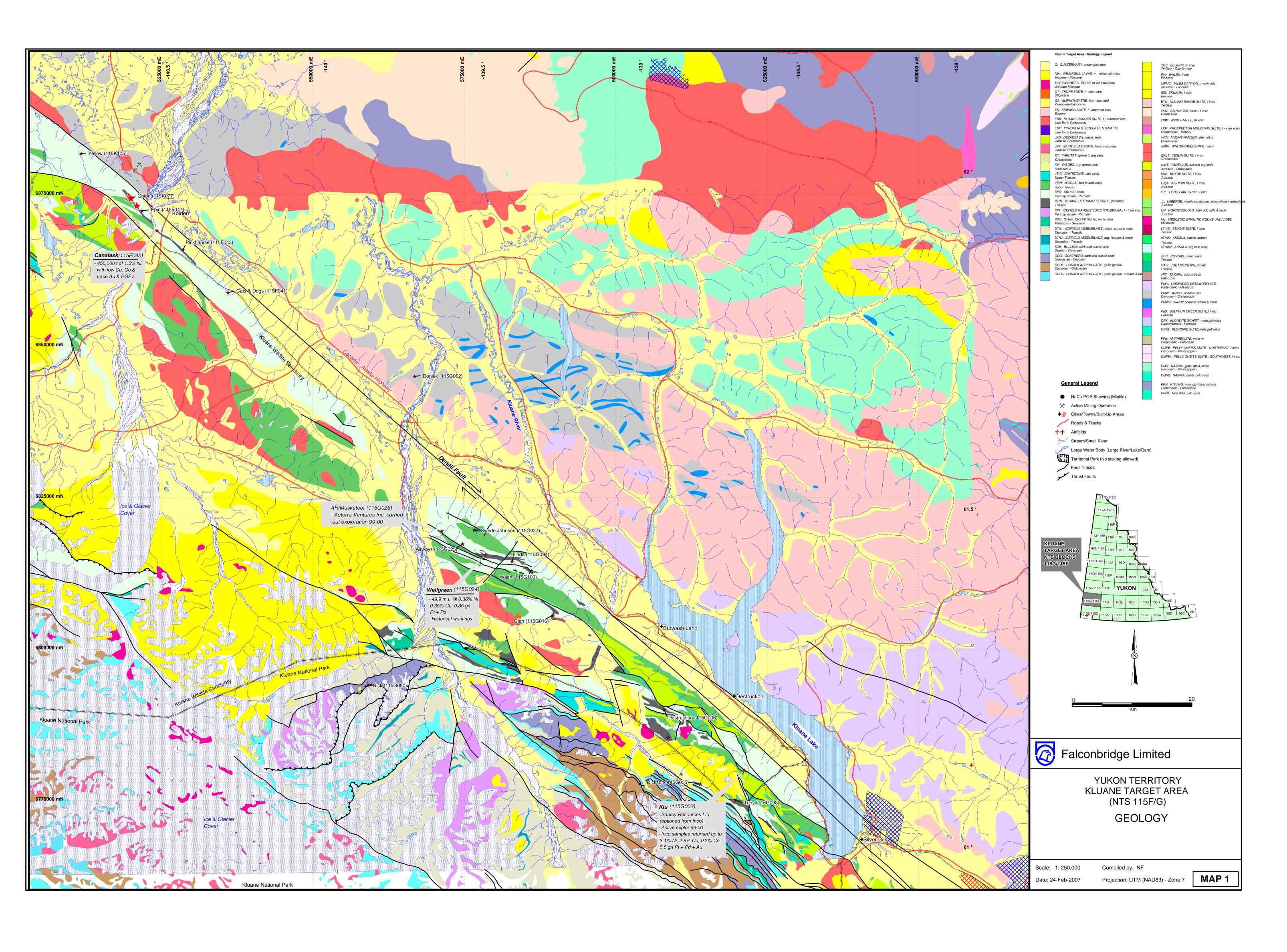
HAND 1 - 27 Claims, WENG 5 - 10, RIVER 3 - 8, WR 67 - 69, 89 and 91 Claims

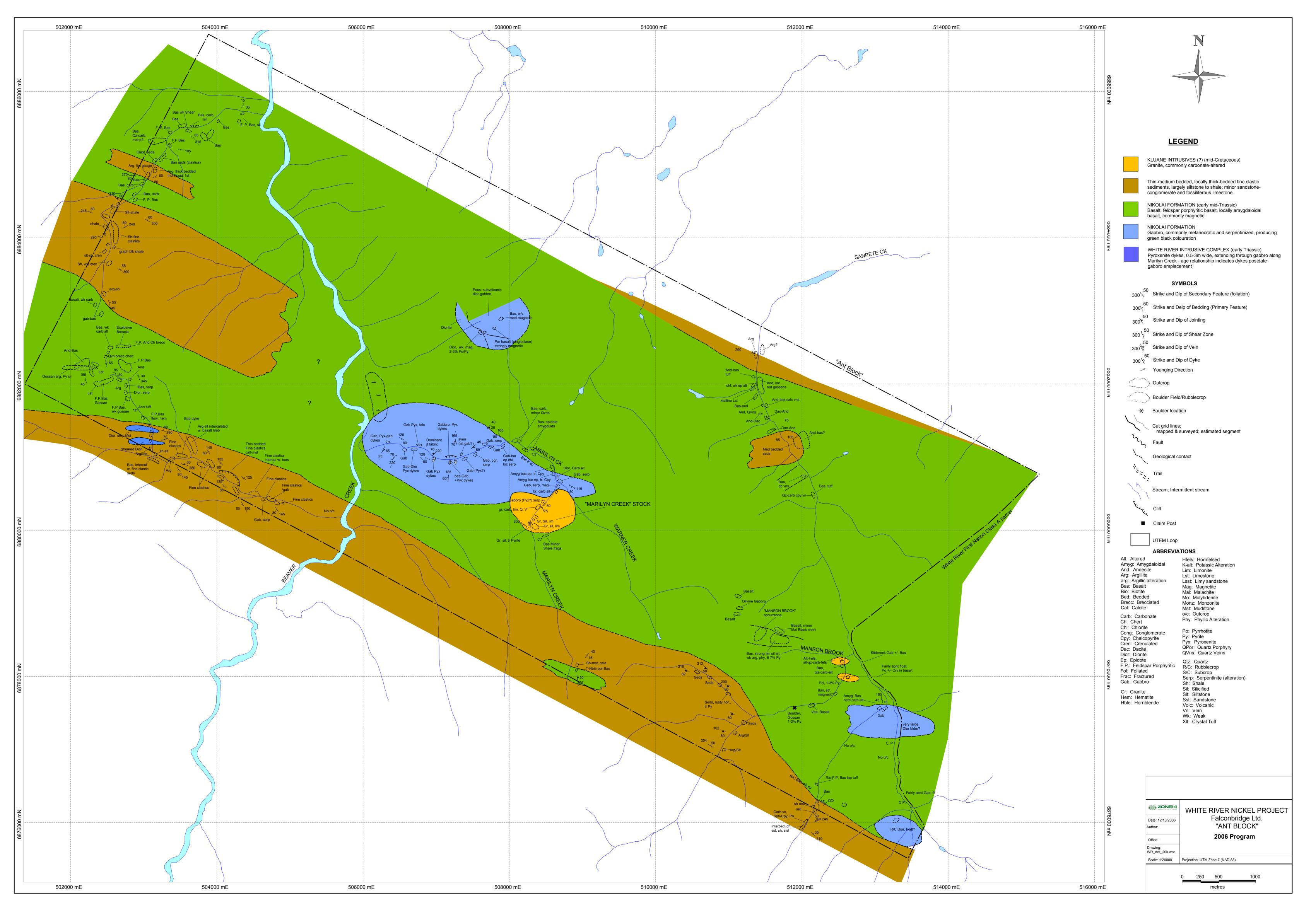
Xstrata plc (Falconbridge Ltd), August, 2006

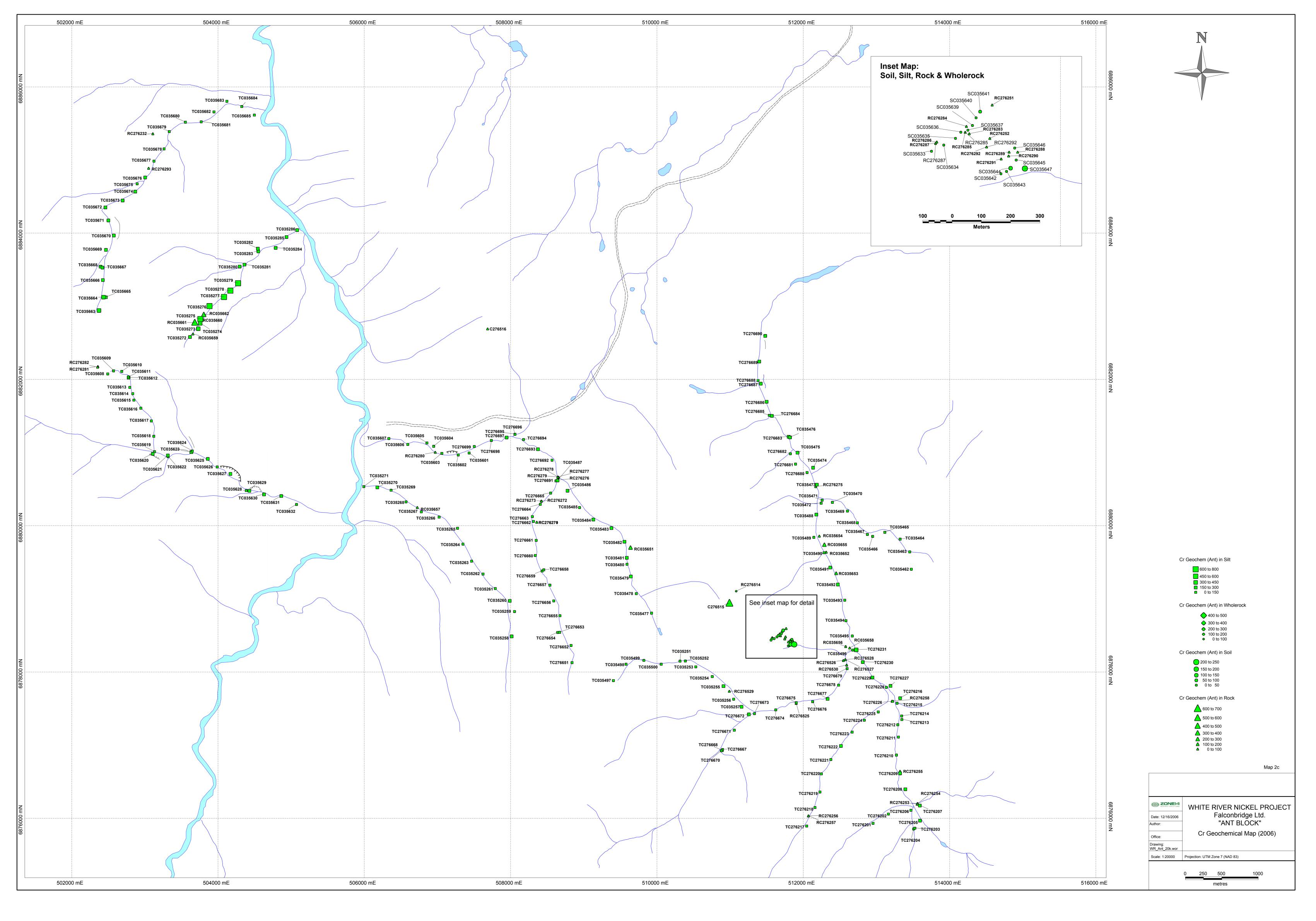
Type of Expenditure	No. of units	Pri	ce per unit	To	tal Expenditure
Rock Assay Samples	9	\$	29.41	\$	264.69
Rock: Whole Rock Analysis	3	\$	60.03	\$	180.09
Soil Sampling	130	\$	26.78	\$	3,481.40
Silt Sampling	6	\$	26.78	\$	160.68
Shipping				\$	213.00
Wages: Geologist	6	\$	600.00	\$	3,600.00
2nd Geologist	1	\$	300.00	\$	300.00
Field Technician 1	7	\$	230.00	\$	1,610.00
Field Technician 2	4	\$	150.00	\$	600.00
Accommodations	18 person-days	\$	150.00	\$	2,700.00
Truck Rental	7	\$	80.00	\$	560.00
Line Cutting*	48	\$	350.00		\$16,800
Pre-project preparation:					\$1,200
Data compilation, report writing					\$3,000
			Total:	\$	34,669.86
			•		`

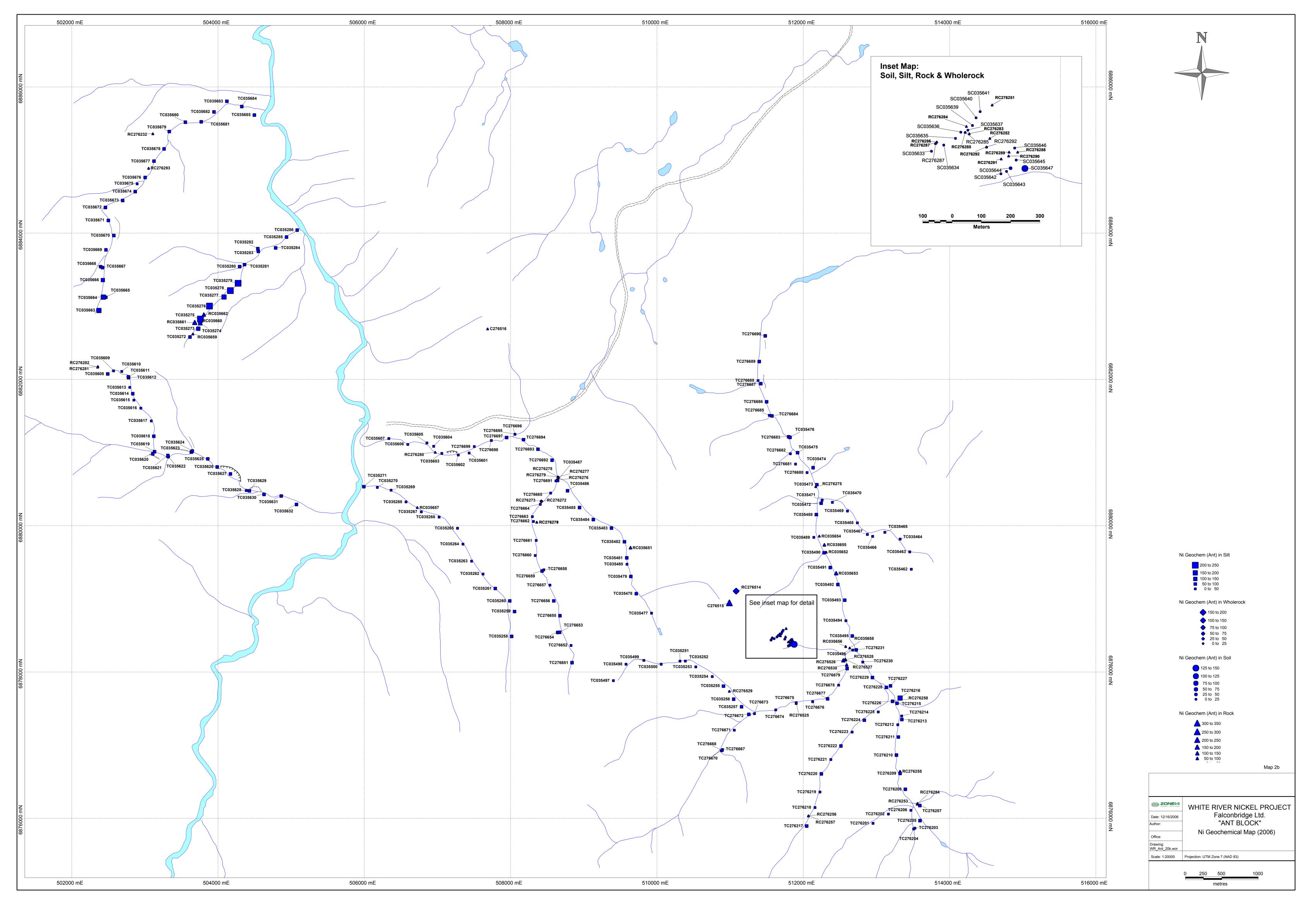
^{*} Remote but surface-accessible grid; limited daily production, charged at daily rate

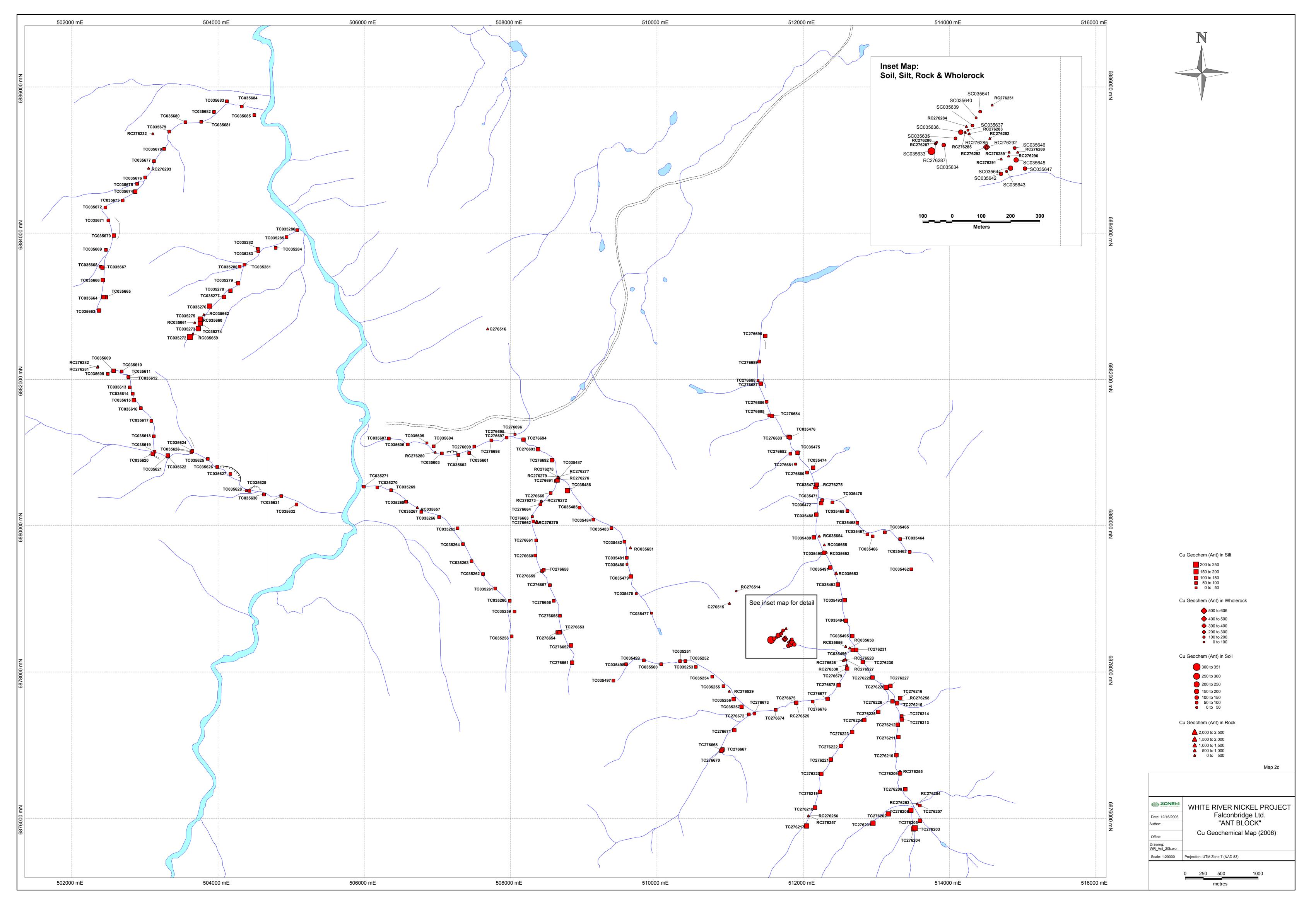
N.B. All field expenditures incurred from July 15 - August 8, 2006


Appendix 8c: Expenditures, PIC Claim Block:


PIC 1 - 156 Claims, KLUX 13 - 16 Claims


Xstrata plc (Falconbridge Ltd), August, 2006


Type of Expenditure	No. of units	Pr	ice per unit	To	otal Expenditure
Rock Assay Samples	7	\$	29.41	\$	205.87
Rock: Whole Rock Analysis	15	\$	60.03	\$	900.45
Silt Sampling	14	\$	26.78	\$	374.92
Shipping				\$	57.50
Wages:	1 manday	\$	600.00	\$	600.00
	1 manday	\$	300.00	\$	300.00
	10 mandays	\$	250.00	\$	2,500.00
Accommodations	12 mandays	\$	150.00	\$	1,800.00
Helicopter Costs (incl fuel)	8.1 hours	\$	1,150.00	\$	9,315.00
Pre-project preparation:				\$	990.00
Data compilation, report writing				\$	2,400.00
			Total:	\$	19,443.74


N.B. All field expenditures incurred from August 18 - 22, 2006

