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Abstract— Deep neural networks (DNNs) could be very useful in 
blockchain applications such as DeFi and NFT trading. However, 
training / running large-scale DNNs as part of a smart contract is 
infeasible on today’s blockchain platforms, due to two 
fundamental design issues of these platforms. First, blockchains 
nowadays typically require that each node maintain the complete 
world state at any time, meaning that the node must execute all 
transactions in every block. This is prohibitively expensive for 
computationally intensive smart contracts involving DNNs. 
Second, existing blockchain platforms expect smart contract 
transactions to have deterministic, reproducible results and 
effects. In contrast, DNNs are usually trained / run lock-free on 
massively parallel computing devices such as GPUs, TPUs and / or 
computing clusters, which often do not yield deterministic results. 

This paper proposes novel platform designs, collectively called 
A New Hope (ANH), that address the above issues. The main ideas 
are (i) computing-intensive smart contract transactions are only 
executed by nodes who need their results, or by specialized 
serviced providers, and (ii) a non-deterministic smart contract 
transaction leads to uncertain results, which can still be validated, 
though at a relatively high cost; specifically for DNNs, the 
validation cost can often be reduced by verifying properties of the 
results instead of their exact values. In addition, we discuss various 
implications of ANH, including its effects on token fungibility, 
sharding, private transactions, and the fundamental meaning of a 
smart contract. 

I. INTRODUCTION 

Smart contracts, which are collections of executable computer 
code on a blockchain, have been criticized as “neither smart nor 
contracts” [9]. This paper aims to make smart contracts smarter 
by incorporating large-scale deep neural networks (DNNs) into 
the code, which has numerous potential applications. For 
instance, in decentralized finance (DeFi), a DNN might help 
detect abnormal token price movements, which could be part of 
a flash-loan attack [4]. A decentralized autonomous 
organization (DAO) [5] might trade tokens automatically with 
a DNN trained continually through reinforcement learning, 
e.g., AlphaPorfolio [6]. A content creator might apply a 
generative adversarial network (GAN) [10] to generate visual 
art images, and subsequently tokenize them as non-fungible 
tokens (NFTs) tradable in a decentralized exchange. In 
particular, this paper aims to incorporate into smart contracts 
not only DNN inference, but training as well, since DNNs often 
need to be re-trained or fine-tuned with new data in many 

 
1 https://ethereumprice.org/gas/ 
2 https://nomics.com/markets/gwei-gwei/usd-united-states-
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applications, e.g., in reinforcement learning [18] and time series 
forecasting [19]. 

However, with today’s blockchain platforms, training or 
running DNNs within a smart contract still appears to be a 
distant goal, for two main reasons. The first is cost. In Ethereum 
[8], for example, each smart contract instruction incurs a 
monetary cost called gas, which is about 5 GWei as of June 
20211 (around 10-5 US dollars2). On the other hand, a large 
DNN is usually computationally intensive, leading to a 
prohibitively high gas cost. Specifically, Nvidia RTX 3090, a 
popular GPU for deep learning, can execute over 35 trillion 
floating-point operations (TFLOPs) per second 3 ; even so, 
training a larger DNN on such a GPU can take hours or days. 
In terms of gas cost, such a process would easily burn millions 
of dollars. 

Can we make smart contracts cheaper by artificially 
lowering gas prices? For example, Binance Smart Chain 
(BSC)4 gained popularity rapidly in 2021, in part thanks to its 
significantly lower (often by a factor of 10x) gas cost compared 
to Ethereum. However, there is a fundamental limit on how 
cheap gas can be: that on current blockchain platforms, each 
node is required to execute all transactions in all blocks, and 
maintain the entire world state at all times, which includes 
account balances and smart contract storage of all accounts in 
the entire blockchain. Consequently, a node can only finish 
processing a block (say, block b), after the node completes 
executing all transactions in b. If the gas price is too low, and 
the block b contains a transaction with intensive computations 
(e.g., training a large DNN) that takes much time (e.g., days) to 
execute, then the processing time of block b is necessarily long, 
leading to prohibitively high latency for processing and 
validating block b. Partly due to this reason, platforms such as 
Ethereum explicitly limit the total amount of gas consumed 
(independent of gas price) within one block. 

The second major hurdle for training / running a DNN within 
a smart contract transaction is that most blockchain platforms 
implicitly assume that the results of a transaction (including 
return values, token transfers, and modifications of storage state) 
are deterministic and reproducible. For example, in Ethereum, 
the hash value of block b covers the root hash of the global state 
tries [22], which is computed based on the account balances and 
smart contract storage states after executing all transactions in 

3 https://www.nvidia.com/en-eu/geforce/graphics-cards/30-
series/rtx-3090/ 
4 https://www.binance.org/en#smartChain 



block b. When verifying a block, a validator (i) re-executes all 
transactions in b, (ii) re-computes the block hash based on the 
updated world state, and then (iii) checks whether this hash 
matches the one included in b. On the other hand, many 
algorithms involved in DNN training do not output 
deterministic results. For instance, the documentation of 
PyTorch, a popular Deep Learning library, lists 
nondeterministic functions5. As of June 2021, this list includes 
commonly used functions such as tensor interpolation (e.g., for 
resizing an image), max / average pooling (commonly used in 
convolutional neural networks), and CTC loss [11] (for 
learning sequence alignment). Further, note that a 
“deterministic” function in PyTorch only guarantees 
reproducibility when the same code is run on the same 
hardware; in other words, different types of GPUs can still lead 
to different results. Lastly, some parallel DNN training 
algorithms such as Hogwild! [15] are specifically designed to 
sacrifice result determinism to gain high efficiency. 

Is it possible to validate computer programs with long 
running time and non-deterministic results without centralized 
trusted authorities? This paper draws inspiration from common 
practices in the machine learning field, which has been 
advancing rapidly with a high degree of transparency. In 
particular, it is common for machine learning researchers to 
release source code, training data, and pre-trained models in a 
public repository, e.g., Github (github.com), along with a 
published paper. Other researchers interested in the same 
subject then download the code and data, run the code on the 
dataset to train a new model, and verify that the test accuracy 
of the new model is consistent with that obtained by the pre-
trained model and the claims of the paper. Unlike validators in 
the blockchain world, no machine learning researcher would 
attempt to run all versions of all code ever released in all 
repositories, for the pointless purpose of “maintaining the 
world state”. Instead, code is run on a need-to-run basis. 

Meanwhile, the fact that the results of many DNN training 
algorithms are not exactly reproducible is often just a minor 
inconvenience. In particular, when a researcher validates the 
release source code, dataset, and pre-trained model of a paper, 
the validation process focuses on obtaining comparable 
performance (e.g., inference accuracy on a test dataset) as the 
released results of the code (i.e., the pre-trained model), rather 
than reproducing an exact, bit-to-bit copy of the results. In other 
words, the validation process runs another program to verify 
the properties of execution results to establish correctness, 
which bypasses the irreproducible result problem. 

As an extreme case, there exist massive DNNs with billions 
or even trillions of parameters, whose training is essentially 
limited to a few so-called “big-compute” organizations with 
vast amounts of computing power. For instance, the training of 
GPT-3 [3] was performed in a large data center, and cost 
millions of dollars. Further, the training data could be 
proprietary in some cases, e.g., Google’s internal image 
collection JFT-300M [17]. Even for such cases, the machine 

 
5https://pytorch.org/docs/stable/generated/torch.use_deterministic_al
gorithms.html#torch.use_deterministic_algorithms. 

learning community still managed to validate the released pre-
trained models (e.g., a Transformer-based language model [7]) 
by verifying their effectiveness when fine-tuned on another task 
(e.g., natural language inference [21]) with a dataset not 
involved in the original training process of the DNN. In essence, 
here the validation of a program’s outputs verifies the utility of 
these outputs in the target applications. In this sense, the 
original program that obtained these results could be treated as 
a black box. For instance, in the case of GPT-3 [3], the authors 
did not release their pre-trained DNN model; instead, they 
allowed external researchers to interact with the model through 
a web interface, as a limited form of validation. 

Based on the above observations, this paper proposes a set 
of fundamentally new blockchain platform designs, 
collectively called A New Hope (ANH), to enable the 
integration of large-scale DNNs into smart contracts. 
Specifically, ANH has the following characteristics: 
 Validators of new blocks do not execute the transactions 

therein. 
 Transaction execution is on-demand, possibly through a 

service provider called an on-chain accountant. 
 Smart contract transactions are allowed to have non-

deterministic results, which are verified through a special 
validation mechanism that may involve invoking other 
smart contracts. 

In the following, Section II focuses on handling compute-
intensive smart contracts that still yield deterministic results. 
Section III (which will appear in the next version of this pre-
print) deals with smart contracts with non-deterministic results. 

II. HANDLING COMPUTING-INTENSIVE SMART CONTRACTS 

This section focuses on enabling computing-intensive 
operations such as DNN training in smart contracts. In this 
section, all transactions are assumed to be deterministic; 
transactions with non-deterministic results are handled later in 
Section III. 

A. Validating Blocks without Executing Transactions 

In existing blockchain systems, a block consists of a sequence 
of transactions and additional verification information such as 
signatures and hash values. For example, a block (say, bi) in 
Ethereum [22] contains the following contents: 
 Block number (i.e., i) and the hash value in the previous 

block (i.e., bi-1). 
 An ordered list of transactions, denoted as bi.txs. 
 Values required by the consensus protocol, which is 

orthogonal to this paper. 
 Root hash of the world state (denoted as bi.ws) after 

executing all transactions in bi.txs. Specifically, bi.ws 
covers the balance and nonce (i.e., the number of 
transactions initiated) of every account, as well as the 
code and storage states of each smart contract, on the 
entire blockchain. 



Among the above items, only the last one, i.e., bi.ws, poses a 
fundamental limit on the maximum computational cost of a 
smart contract transaction. Specifically, to generate bi.ws, the 
node that creates (or verifies) block bi must (i) maintain the 
world state prior to bi and (ii) run all transactions in bi.txs. Due 
to (ii), creating a new block bi takes at least as much time as 
running all transactions in bi.txs, which can be long when a 
transaction in bi.txs contains expensive operations, e.g., training 
a DNN. Meanwhile, the creation of different blocks cannot be 
pipelined to hide the cost, since the creation of the next block 
bi+1 can only be done once bi is confirmed, due to the above 
requirement (i). 

To address the above problem, the proposed approach ANH 
takes a bold move of removing bi.ws altogether, for any i>0, 
meaning that with a single exception of the genesis block b0, no 
block contains information about the world state. Further, a 
block can be formed as soon as its creator node gathers a list of 
transactions bi.txs; a validator of bi simply verifies the signature 
of each transaction in bi.txs, and completes the consensus 
process (orthogonal to this paper). In other words, neither the 
block creator nor the validators are required to run any 
transaction in bi.txs. 

Double-spending attacks. An immediate question about the 
above approach is: is the blockchain still robust against double-
spending attacks? To answer this, let’s examine a simple 
double-spending scenario: a user Alice with account x and 
balance x initiates two properly signed transfers: one to Bob 
and another to Carol, both with all the money in Alice’s account, 
i.e., x. Without maintaining the world state, block creators and 
validators may not know Alice’s account balance x

6 ; 
consequently, both transfers are added to the blockchain. Does 
this mean Alice has successfully performed a double-spending 
attack? 

The answer, fortunately, is no. The reason is that although 
the blockchain contains both transactions AliceBob and 
AliceCarol, due to the consensus protocol of the blockchain, 
there is a unique order of these two transactions. Hence, when 
someone (clarified later in Section II-B) eventually executes 
these two transactions, the later one of them inevitably fails due 
to insufficient balance7, preventing the double-spending. 

In general, given an initial world state, a sequence of 
deterministic transactions with a fixed order uniquely 
determines the world state after executing these transactions, 
which can be trivially proved by induction. In fact, this is 
commonly performed in log-based incremental data warehouse 
replication and Change Data Capture (CDC), where a log file 
records a sequence of transactions [16]. Since the blockchain’s 
consensus protocol establishes a unique transaction order, there 
is no ambiguity of the final world state bi.ws after a block bi, 
even though the block creator / validators have not explicitly 
computed bi.ws. 

 
6 Strictly speaking, the proposed approach ANH does require block 
creators and validators to verify that Alice has sufficient balance to 
pay the transaction fee. This is elaborated in Section II-D. 

Observing transaction results. One way to understand the 
above approach is that the world state bi.ws in fact always exists 
for every block bi, just that no one has yet observed bi.ws by 
executing transactions in bi.txs. Given sufficient time, any node 
can eventually observe bi.ws by executing all transactions that 
bi.ws depends upon. In other words, each transaction tx 
committed to the blockchain (i.e., passing consensus) is 
considered already happened and has permanently and 
irreversibly altered the world state; its specific effects on the 
world states are only observed later on, when tx is executed 
(detailed in Section II-B). 

For instance, consider a DeFi lender smart contract with an 
automatic loan approval function that employs a DNN to decide 
on whether or not to approve the transaction sender’s loan 
application. Now, imagine that thousands (depends on the 
block capacity) of loan applications are committed to the 
blockchain in a single block b. As soon as b passes consensus 
(which is fast since none of the transactions are executed), the 
decision for each of the loan applications has already been 
made by the DNN, though at this point, no user knows these 
decisions. After that, each loan applicant can observe her result, 
by sequentially executing transactions in b till reaching her own. 
Note that the observation process can take far longer than the 
creation of block b, due to the computationally intensive DNN. 

Challenges. The above platform design in ANH, i.e., blocks 
of transactions are added to the blockchain before their 
execution, leads to two major challenges. The first is how to 
perform an on-chain to off-chain (O2O) transaction. For 
instance, consider that Alice transfers tokens to Bob in a 
transaction (denoted as txab), in exchange for real-world (i.e., 
off-chain) goods or services. Assume that the txab is 
successfully added to the blockchain, say, in block bi. Then, 
how does Bob know that he has indeed received the tokens, i.e., 
txab is not rolled back? Intuitively, Bob needs to observe his 
account balance after txab, which can be computational 
intensive even though txab is a simple token transfer, because 
determining whether Alice’s account has sufficient balance for 
txab can be non-trivial, especially when Alice’s tokens come 
from complex smart contract (e.g., DeFi) transactions. 

Another challenge is that an adversary can launch a denial-
of-service (DoS) attack on the blockchain platform, by flooding 
the network with invalid transactions. An example of such 
attack is shown in the following algorithm. 

Algorithm 1: Tx-DoS 
1. Repeat (infinite loop): 
2.  Generate a pair of keys (kpub, kpriv) for a new account. 
3. Use the private key kpriv to sign a new transaction tx 

that transfers tokens to an arbitrary recipient. 
4.  Submit the signed tx to the blockchain platform. 

In the above algorithm, the transaction tx attempts to transfer 
tokens from a new account with zero balance, which is an 

7 When the execution of a transaction encounters an invalid operation, 
e.g., a transfer without sufficient balance, the whole transaction is 
rolled back, reversing all its modifications of the world state. This is a 
common practice in major blockchain platforms such as Ethereum.   



invalid operation and has no effect on the world state. However, 
without explicitly maintaining the world states, the validators 
do not have account balance information, and, thus, must accept 
these transactions and put them in new blocks. Consequently, 
algorithm Tx-DoS leads to a flood of invalid transactions, which 
increases network transmissions and slows down the entire 
blockchain. 

In the following subsections, we address these challenges 
with novel platform designs in ANH. 

B. Transaction Indexing and Selective Execution 

As described in the previous subsection, in ANH, transactions 
are added to the blockchain pre-execution. When transactions 
contain expensive operations such as DNNs, maintaining the 
entire world state in real-time can become prohibitively 
expensive. Hence, ANH adopts a lazy transaction execution 
strategy: that a transaction is executed only when its results are 
needed. In particular, a user can investigate the value a given 
state s at a given time (e.g., sbi.ws for a given block bi), by 
selectively executing transactions relevant to s. To facilitate 
fast retrievals of such transactions, the transactions can be 
indexed by an inverted file [1] that facilitates efficient state-to-
transactions lookup, akin to how search engines index web 
pages on the Internet for fast keyword-based retrieval. 

In our previous example that Alice commits a transaction 
txab to the blockchain transferring tokens to Bob, Bob would 
naturally want to check his own account balance after txab. 
Ideally, all transactions on the blockchain are indexed by 
senders and receivers, so that Bob can quickly retrieve 
transactions relevant to his account, and executes only these to 
find his account balance. Suppose that Bob never submits 
computationally expensive smart contract transactions, then, 
ideally it should be relatively cheap for him to check his balance. 
Unfortunately, this is not true in the presence of adversaries: as 
we explain below, a simple query such as Bob checking his own 
account balance can be surprisingly expensive to answer. 

Execution DoS attacks. Consider the following function, 
as part of a smart contract: 

Algorithm 2: Exec-DoS 
1. Perform some computationally expensive operations. 
2. Randomly choose an account x with a random seed 

obtained from the result of Line 1. 
3. Transfer a small amount of tokens (e.g., 1 Wei) from the 

parent smart contract account to account x. 

A transaction calling the above smart contract function Exec-
DoS can, in theory, modify the account balance of any user (and 
any smart contract) on the blockchain. In other words, the result 
of every account balance query depends on the execution of 
Exec-DoS, which involves computationally expensive 
operations (Line 1). Essentially, such transactions are a form of 
denial-of-service (DoS) attack of the entire blockchain platform, 
that significantly increases the cost of account balance queries. 

To defend against Exec-DoS, a possible countermeasure is 
to impose financial penalties on accounts for initiating 
transactions invoking such a contract. For example, the 
blockchain platform could require that each transaction tx 

explicitly declare the accounts and / or smart contract storage 
states that can be possibly affected by tx [23], and charges a fee 
(elaborated in Section II-D) for each of them. Meanwhile, 
modifying an undeclared account is treated as an invalid 
operation, and any transaction with such an operation is rolled 
back.  While such measures alleviate the problem of generic 
execution DoS attacks, it does not prevent a targeted attack on 
a specific account. Continuing our example, the adversary 
could initiate a transaction calling a contract similar to the 
following one, to increase the cost of account balance queries 
of a target victim, e.g., Bob. 

Algorithm 3: Targeted-Exec-DoS(x) 
// Input: x: an account in the blockchain. 
1. Perform computationally expensive operations. 
2. Randomly choose a small quantity q. 
3. Transfer q tokens to account x. 

Targeted-Exec-DoS works against any given account x, making 
an account balance query computationally expensive for x 
without the cooperation of x. Defending against Targeted-Exec-
DoS is not easy. Instead, the proposed ANH platform takes a 
different approach: that the user is recommended to only 
perform minimal accounting queries that retrieve only the 
needed information (which does not depend upon Targeted-
Exec-DoS) from the blockchain, explained below. 

Minimal accounting queries. In our running example, 
observe that Bob, in fact, needs neither his exact account 
balance after txab, nor Alice’s exact account balance right 
before txab. Instead, all Bob needs to know, is a single bit of 
information: whether or not Alice’s account balance exceeds 
the amount transferred in transaction txab, right before txab, 
which is referred to as a minimal accounting query (MAQ) 
Intuitively, if Alice’s account balance turns out to be 
insufficient for txab, then, txab is rolled back, failing the token 
transfer; in this case, Bob should refuse to deliver the purchased 
goods or services. Conversely, if Alice’s account has sufficient 
balance, then the transfer in txab irreversibly succeeds, meaning 
that Bob is obliged to deliver the purchased goods or services. 

In general, the MAQ depends on (i) the blockchain 
application setting, and (ii) how the blockchain interfaces with 
the physical world. For instance, it is possible that Alice’s 
transaction leads the modification of a smart contract storage 
state (e.g., “vehicle insurance claim approved”) that triggers 
Bob to perform an activity (e.g., repairing a damaged car). The 
choice of the MAQ in such cases is an important part of the 
blockchain application design to make the application viable, 
which is decided by the app developer. In the following, we 
focus on the case of simple token transfer such as txab in our 
running example. 

Income and expenses. It remains to clarify how Bob can 
efficiently perform an MAQ to check whether Alice has enough 
funds for the transfer transaction txab. For this purpose, we first 
define two concepts: expense and income of a given account. 
Note that in this subsection, we assume that both Alice and Bob 
are user accounts. The cases for smart contract accounts are 
discussed later in Section II-E. 



Definition 1 (Expense). Any transaction tx sent from account x 
that carries v tokens represents an expense of amount v w.r.t. 
account x. 

Definition 2 (Income). Given a transaction tx and an account x, 
let x and 'x be the account balance of x before and after tx, 
respectively. Then, there are two cases in which tx represents 
an income of account x. 
 Case 1: tx is sent from another account y≠x, and x≠'x. In 

this case, tx represents an income of amount 'x‒x w.r.t. 
account x. 

 Case 2: tx is sent from x carrying v tokens, and x‒v≠'x. 
In this case, tx represents an income of amount 'x‒(x‒v) 
w.r.t. account x. 

With the above definitions, the balance of a user account x is 
clearly equal to its total income subtracted by its total expenses. 
Note that unlike the concept of debit and credit in traditional 
accounting, in our context, a transaction tx can represent both 
an expense and an income w.r.t. an account x. For instance, x 
might send out tokens (which represents an expense of x) to a 
smart contract account y as part of a function call, which 
subsequently triggers an operation (which can be from y, or 
another smart contract) that sends tokens back to x (which 
represents an income of x). A special case concerns the 
payment of transaction fees, which is explained further in 
Section II-D. 

The above definitions of expense and income ensure an 
important property: that it is easy to compute the total expenses 
of a user account. Specifically, all transactions on the 
blockchain can be stored in a database, indexed by the sender 
account, with a value column representing the amount of tokens 
carried in each transaction. Then, the total expense of a given 
account x can be computed in a single SELECT query: 

SELECT SUM(value) FROM blockchain WHERE sender=x 

Clearly, the above query can be augmented to express a more 
fine-grained query, e.g., the total expense of account x right 
before a given transaction tx. Details are omitted for brevity. 
The total expense of a smart contract account, on the other hand, 
can be complex, and we defer the discussion to Section II-E. 

The exact total income of an account, however, can be 
expensive to compute, for two reasons. First, the income may 
come from a computationally intensive smart contract function 
call (e.g., a DNN, fine-tuned on new data, decides to send 
tokens to account x), or a sequence of such function calls. In 
fact, the two above-mentioned attacks Exec-DoS (Algorithm 2) 
and Targeted-Exec-DoS (Algorithm 3) are examples of such 
computationally expensive incomes. Second, the income 
transaction itself tx might involve invalid operations and get 
rolled back, e.g., tx may be sent from an account y with 
insufficient balance. In general, an income transaction may 
have far reaching dependencies and require the execution of a 
large number of transactions, possibly with a tremendous 
amount of computation. Hence, obtaining the exact total 
income of an account can be rather difficult. 

Account balance lower bounding. To address the above 
problem, ANH recommends computing a lower bound of an 

account’s total income with selected income transactions. 
Intuitively, the DoS attacks in Algorithm 2 and 3 can only affect 
an account x by increasing its balance; thus, when computing a 
lower bound of x’s balance instead of its exact value, one can 
simply ignore such attacks. 

Formally, we have the following lemma. 

Lemma 1 (account balance lower bound). Given an account x 
and a set of its income transactions , let P be the total income 
of x from all transactions in . Let Q be the total expenses of x, 
and X0 be the initial token balance of x specified in the genesis 
block b0. Then, X0+P‒Q is a lower bound of the account 
balance of x. 

The proof of Lemma 1 is omitted for brevity, which follows 
directly from the definitions of income (Definition 1) and 
expenses (Definition 2). 

Continuing our running example, Alice selects a set  of her 
income transactions, and presents  to Bob. The latter then 
executes transactions in obtaining Alice’s total income P 
represented by transactions in If this total income, combined 
with Alice’s initial balance at genesis (if any), and subtracted 
by Alice’s total expenses (which can be retrieved efficiently as 
explained before), exceeds the value of txab, then Bob can rest 
assured that the token transfer in txab has been successfully 
fulfilled. This process is summarized in the algorithm Pay 
below, where x is Alice and y is Bob in our running example. 

Algorithm 4: Pay (x, y, amt) 
// Inputs: x, y: sender and recipient accounts. 
//  amt: amount to tokens that x sends to y. 
1. x submits a transaction tx transferring amt tokens to y. 
2. x present to y a list of income transactions  
3. y queries the blockchain to obtain x’s total expenses Q 

prior to tx, and its initial balance X0 in the genesis block. 
4. y computes the results of transactions in to determine 

whether X0+P‒Q≥amt 
5. If P‒Q≥amt, then: 
6.  y accepts tx, and performs the required real-world 

 actions in exchange to the token transfer tx.  
7. Else: y rejects tx, and refuses to perform the corresponding 

 real-world actions in exchange to tx. 

Note that in Line 4 of the above algorithm, the recipient y aims 
to determine whether X0+P‒Q≥amt (Lemma 1), which does 
not necessarily involve obtaining the exact value of P. The fact 
that P can be lower-bounded is an opportunity for further 
optimization. 

The Pay process is clearly robust to the attacks Exec-DoS 
(Algorithm 2) and Targeted-Exec-DoS (Algorithm 3), as long 
as these transactions are not added to the set , which is chosen 
by the sender x (e.g., Alice). Further, note that the use of a 
selected set ensures that transactions are executed on a need-
to-execute basis, which is a major goal of ANH. 

It remains to clarify (i) how the sender (Alice) selects the 
income transaction set and (ii) how the recipient (Bob) 
verifies that P‒Q≥amtwith the minimum computations. We 
call these operations computational accounting, which can be 



done through professional services called on-chain accountants. 
In the next subsection, we detail the computational accounting 
process, and how on-chain accounts help in this process. 

C. Computational Accounting and On-Chain Accountants 

Choosing  by income cost. First, we clarify the selection of 
the income transaction set , which is based on the concept of 
income cost, defined below. 

Definition 3 (Income Cost). Given a transaction tx that 
represents an income w.r.t. account x, the income cost Ctx for tx 
is the amount of computations (measured by gas consumption) 
required to determine the specific amount of income v w.r.t. 
account x, as a result of tx. Transaction tx is a zero-cost income 
w.r.t. x, iff. Ctx=0. 

Note that in the above definition, the amount of income v can 
be zero, e.g., when tx is rolled back. The income v, by definition, 
cannot be negative, since all outgoing token transfers are 
considered as expenses, including transaction fee payment, 
elaborated in Section II-D. The concept that each income has a 
cost resembles the real-world situation that incomes are taxed, 
which is discussed in Section II-E. 

Once a user (e.g., Alice) knows the income cost of each of 
her income transactions, the selection of set  reduces to a 
standard knapsack problem, i.e., choosing the set of incomes 
with the minimum total cost that satisfies the inequality X0+P‒
Q≥amt in Lemma 1. Although the knapsack problem is NP-
hard, it is known to have a fully polynomial-time 
approximation scheme [20], meaning that its optimal solution 
can be effectively and efficiently approximated. 

Calculating income costs. Next, we focus on the calculation 
of income costs, which can itself become rather complicated 
and expensive. Figure 1 illustrates three examples of income 
cost. In the first example (Figure 1a), Alice had received 100 
tokens from another account Carol in a transfer transaction txca; 
Carol has an initial balance of 1 million, specified in the genesis 
block b0, which is more than sufficient to cover all her expenses 
including txca. Then, txca is a zero-cost income w.r.t. Alice, 
since the verifier (say, Bob) does not need to execute any smart 
contract code to confirm the value of txca (i.e., 100, which is 
explicitly stated in txca) or that the sender (Carol) has sufficient 
funds to pay Alice through txca. 

In the second example (Figure 1b), instead of a direct token 
transfer, Alice’s rich friend Carol creates a smart contract 
account y, transfers 1,000 tokens to y, and then submits a smart 
contract transaction txya that triggers the transfer of tokens from 
y to Alice. Then, txya represents an income to Alice of value 100, 
and its income cost equals the gas consumption of txya. 

In the last example (Figure 1c), there is another user Dave, 
who made a simple transfer of 100 tokens to Alice via 
transaction txda. Dave’s income comes from a previous smart 
contract transaction txyd which sent tokens from a smart 
contract y set up and funded by Carol, similar to the second 
example. Then, the income cost of txda is the gas consumption 
of txyd, because (i) txda is a simple token transfer that consumes 
no gas, and (ii) to confirm the validity of txda, the verifier Bob 

needs to confirm the income of Dave, which involves the 
execution of txyd. 

 
(a) Example 1: income transaction txca 

 
(b) Example 2: income transaction txya  

 
(c) Example 3: income transaction txda 
Figure 1: Examples of income cost. 

In general, the income cost of a transaction tx is determined by 
the cost of computing the provenance of the world states that tx 
depends upon, including account balances (which might be 
lower-bounded to reduce computations) and smart contract 
storage states (which usually need to be computed exactly). 
When tx has complex dependencies, calculating its income cost 
can be computationally intensive. 

Fortunately, a user often already knows the cost for at least 
some of her income transactions. Observe that in the Pay 
process (Algorithm 4), from the recipient y’s point of view, the 
transaction tx sent by x represents an income, and its cost is 
computed at Line 4, in which y executes the transaction set . 
For instance, in the third example above where Alice receives 
tokens from Dave via transaction txda, if txda went through the 
Pay process, then Alice had already known the cost of txda (i.e., 
the gas cost of txcy) since she had executed txyd during the 
verification of txda. 

In case the user does not already know the cost of an income 
transaction, she needs to explicitly compute this cost. Further, 
Line 4 of the Pay process also incurs much computation. While 
these operations could be done by the user herself, e.g., using 
rental virtual machines from a cloud platform, it is often more 
continent for the user to outsource such tasks to a professional 
accountant through the same blockchain, detailed next. 

On-chain accountants. ANH envisions that third-party 
professional accountants help users perform computational 



accounting tasks, including determining the income costs and 
(selectively) executing a given set   of transactions during the 
Pay process described in Algorithm 4. Such a service can 
achieve economy of scale by serving multiple users, especially 
when their transactions share common dependencies in the 
world state, whose results can be cached to improve efficiency. 
Further, the accountant may possess the expertise and / or 
specialized algorithms for reducing the cost of performing 
computational accounting tasks, which are not commonly 
available to ordinary users. 

Such an accountant can be a trusted party, akin to real-world 
accounting firms and notary public services, who are legally 
bound to produce correct results. Note that if the accountant 
provides incorrect results to the client, he/she risks being caught 
lying, which happens when an honest party executes the same 
transactions and verifies the accountant’s answers with the true 
results. The accounting service can also be performed via the 
same blockchain, referred an on-chain accountant. There are 
various ways to implement such an accountant through smart 
contracts. One way is to require that the accountant deposit a 
considerable amount of tokens to a smart contract that contains 
an Oath-of-Correctness function, as shown below. 

Algorithm 5: Oath-of-Correctness(Q, r, p) 
// Input: Q: a query about a given world state at a given time. 
// r: a value that is claimed to be the result of Q. 
// p: penalty amount for a falsified result r. 
1. If r ≠ the result of query Q, then: 
2.  Transfer p tokens to a blackhole account. // slash 

Basically, the Oath-of-Correctness function in the smart 
contract takes as input (i) a user’s query Q, whose result can be 
uniquely determined by past transactions on the blockchain, 
and (ii) the accountant claimed result r of Q.  Once the account 
finishes the computations requested by the client, it calls Oath-
of-Correctness with the results. The client can then directly 
read r from the Oath-of-Correctness transaction description, 
without executing any transaction on the blockchain. If the 
accountant falsifies r, then he/she gets slashed (Line 2) and 
loses a certain amount of tokens (specified by p) from the 
deposit as a penalty, which goes to a blackhole account that no 
one knows the private key, e.g., 0x0. Alternatively, the penalty 
tokens can be paid to the client as compensation. 

Such an oath discourages an honest accountant from 
returning incorrect results. Note that it is computationally 
intensive to know whether the oath contract has enough deposit 
for the slash operation to take effect (Line 2). To establish that, 
the oath smart contract account can be periodically audited by 
another accountant. The frequency of such auditing depends on 
the trustworthiness of the accountant (e.g., by the amount of 
deposit and her history of serving other clients), which might 
be automated via machine learning. 

It is worth mentioning that instead of setting up an oath 
smart contract at the accountant (e.g., Algorithm 5), it is also 
possible to set up a bounty smart contract at the client, which 
pays the accountant only if the answer is correct. When the 
accountant is a professional service and the client is an ordinary 
user, it might appear more natural to set up the smart contract 

at the accountant’s side. The idea of a client-side bounty smart 
contract is revisited later in Section III. 

D. Collecting Transaction Fees 

So far, our discussion has not addressed an important issue: the 
collection of transaction fees by validators. Unlike traditional 
blockchains (e.g., Bitcoin [14]) in which the transaction fee can 
(theoretically) be zero and the miners are paid by the platform, 
in ANH, each transaction must incur a fee, in order to prevent 
the Tx-DoS attack described in Algorithm 1. Further, to 
effectively defend against Tx-DoS, the transaction fee payment 
for any transaction tx must be immediately and explicitly 
confirmed by the block validators during the consensus 
protocol; in particular, if the sender’s account does not have 
sufficient balance to pay the fee for tx, then tx should be ignored 
and not added to a new block. However, paying transaction fees 
with the Pay process (Algorithm 4) is clearly infeasible, since 
the consensus protocol needs to be performed with stringent 
time constraints. 

To address this problem, ANH imposes the following rules: 
1. Transaction fees must be paid with zero-cost income 

(Definition 3). 
2. The transaction sender must pay the maximum possible 

gas costs specified by the gas limit of the transaction. If 
the transaction completes without reaching the gas limit, 
the remaining paid gas is returned to the sender as an 
income of the sender’s account. 

When an account does not sufficient zero-cost income to cover 
the transaction fee, its transactions are immediately rejected by 
the block validators during the consensus protocol. The 
following lemma clarified the source of zero-cost incomes, 
whose proof follows from Definition 3, and is omitted for 
brevity. 

Lemma 2 (Source of Zero-Cost Income). Each zero-cost income 
w.r.t to an account x can be traced back to a source of tokens 
directly provided by the blockchain platform, e.g., the genesis 
block, through a sequence of direct user-to-user token transfers 
ending at x. 

When a user runs low on zero-cost income, it may use the 
service of a professional money changer service, discussed in 
Section II-E. 

Fee structure. Next we clarify the necessary components 
of the transaction fee. As explained above, there must be a 
minimum fee for each transaction, to deter the Tx-DoS attack 
(Algorithm 1). Further, to prevent infinite loops, there needs to 
be a minimum gas charge, which can be set far lower than 
traditional blockchain platforms, since transactions on ANH 
are executed on a need-to-run basis, and might never be 
executed, e.g., Exec-DoS and Targeted-Exec-DoS presented in 
Section II-B. 

In existing platforms, the gas costs are designed without 
consideration for DNN training, which is typically performed 
on GPUs or TPUs. For instance, the multiplication of two large 
matrices can be done efficiently using hardware-accelerated 



API calls (e.g., Nvidia CUDA8); therefore, the gas cost of a 
matrix multiplication operation should be far lower than the 
sum of the gas cost for the underlying elementary operations 
such as multiplications and additions. Note that the gas cost of 
different operations also affects DNN architecture design. For 
instance, on GPUs, a 3x3 convolution costs significantly less 
than 9 1x1 convolutions, which has been exploited in ConvNet 
designs such as ShuffleNet [13]. Hence, the gas cost should 
agree with the hardware benchmark results to provide the 
correct incentives for efficient DNN architecture design. 

Finally, existing platforms also incur rather large gas costs 
for memory consumption, since each node is required to 
maintain the entire world state. In ANH, memory gas cost can 
be significantly reduced for similar reasons as computational 
gas cost. Meanwhile, large objects, such as weights of a trained 
DNN, should be placed in secondary decentralized storage, e.g., 
via IPFS [2], rather than in memory. 

E. Discussions 

Token fungibility and economics. Roughly speaking, 
fungibility means every token should hold the same value, 
regardless of its history. ANH trades token fungibility with 
computational efficiency on the blockchain platform, by 
deferring smart contract computations to payment time 
(Algorithm 4), which leads to the concept of computation cost 
of income (Definition 3). This concept may appear esoteric at 
first glance; a closer look reveals that income cost in fact 
applies to the physical (i.e., off-chain) world too. In particular, 
any sizable amount of money, regardless of the underlying 
currency type or technology, is hardly fungible, due to various 
legal constraints. For instance, different income items can be 
taxed at different rates, depending on the type (e.g., salary, 
capital gain, inheritance, divorce payments), source (e.g., 
domestic, foreign), etc. In this sense, a common task that 
accountants in the physical world perform is to compute 
solutions to the optimization problem that minimizes the cost 
(e.g., tax obligations) of money. 

In ANH, the accounting cost of money increases 
monotonously over time, which may cause problems both on 
the microeconomic and macroeconomic levels. On the 
microeconomic level, an income item whose accounting cost 
exceeds its value is essentially worthless to the user. Note that 
the accounting cost varies depending on the user: to an ordinary 
individual, the cost can be rather high since the user needs to 
purchase retail services from an accountant; to a large financial 
institution with its own data centers and accounting team, the 
cost can be significantly lower. Hence, one way to mitigate the 
problem is through dedicated money changer services, which 
exchange high-cost to low-cost (or even zero-cost) money at a 
fee. The design of such a service is outside the scope of this 
paper, and is left as future work. 

On the macroeconomic level, the total accounting cost of all 
tokens (which is initially zero in the genesis block) increases 
with every smart contract function call, and can never decrease. 
Meanwhile, the blockchain platform requires low-cost money 

 
8 https://developer.nvidia.com/cuda-zone 

to function, e.g., transaction fee payment must be done with 
zero-cost income, as explained in Section II-D. This problem 
needs to be addressed on the blockchain platform level through 
governance rules. For instance, a blockchain may introduce 
sources of zero-cost money after the genesis block (e.g., 
payments to block validators, airdrops, etc.), which resembles 
a central bank injecting liquidity to the economy.  

Another way is to selectively adopt the traditional 
blockchain approach in ANH, leading to a hybrid system. In 
particular, a rich account may present a high-cost income item 
to all validators in the blockchain, who confirm the income by 
executing the relevant transactions locally, reaching consensus 
over all relevant world states, and agreeing to replace the 
expensive income item (e.g., by dumping it to a blackhole 
account) with newly minted zero-cost tokens issued by the 
platform. Such measures are left to the implementation of the 
specific blockchain platform adopting the ANH designs. 

ANH vs. sharding. ANH reduces total smart contract 
computation costs through lazy, on-demand execution. In the 
cryptocurrency community, the hope for fast transaction 
execution has been mostly placed on sharding (e.g., [12]) 
which processes transactions in parallel. Note that there is a 
limit to parallelization: for instance, even with sharding, a slow 
operation (such as DNN training) that takes hours still cannot 
be done within a single transaction, if the platform expects to 
produce a block, say, every 10 minutes. 

Further, the level of parallelism is also limited by the 
dependencies between smart contract function calls and world 
state variables. For example, in SeaLevel [23], each smart 
contract transaction is required to declare all its dependent 
variables, so that the execution engine can maximize 
parallelism accordingly. For this reason, some of the challenges 
faced by ANH also apply similarly to sharding. For instance, in 
a targeted DoS attack of ANH (Algorithm 3), the adversary 
intentionally introduces dependencies to a world state variable, 
i.e., balance of the victim account x. In sharded executions, the 
adversary (e.g., a competing DeFi service) may similarly aim 
to slow down a smart contract function (e.g., a victim DeFi 
service), by issuing transactions that depend upon the victim’s 
variables and a large number of other variables, to reduce the 
victim’s transaction parallelism. 

Finally, observe that ANH can be viewed as an extreme 
form of sharding, in the sense different transactions are usually 
executed by different parties, as transactions are run on a need-
to-run basis. Unlike sharding, however, the number of runs for 
each transaction can vary in ANH, which can be as low as zero. 

Impact on smart contract design. ANH requires special 
considerations in smart contract design. For instance, the 
concept of minimal accounting query (MAQ) needs to be 
defined based on the application’s requirements, as explained 
in Section II-B. Further, unlike user accounts, both expenses 
and income of a smart contract can be complex and 
computationally intensive. For instance, a smart contract may 
contain a function that sends out tokens when it receives an 
income, or upon reaching certain conditions represented by the 



contract’s storage variables. Such an expense can have complex 
dependencies. To make the smart contract usable, the 
application designers and developers should aim to reduce 
transaction dependencies and minimize execution costs for 
important functionalities. Such designs are application-
dependent, and are outside the scope of this paper. 

Lastly, for smart contract applications that have time 
constraints, e.g., a decentralized exchange (DEX), ANH 
recommends limiting the total computational cost of specific 
types of transactions (including the cost of all dependent 
transactions), similar to the case that transaction fees must be 
paid with zero-cost incomes. Details are left as future work. 

III. NON-DETERMINISTIC SMART CONTRACTS 

Allowing a smart contract function to return non-deterministic 
results in ANH opens new possibilities for attacks. For instance, 
consider a trading bot, which buys or sells tokens guided by a 
DNN. Recall that in ANH, transactions are executed after they 
are committed to the blockchain, at which time the user has 
gained new information that was not available at the time the 
transaction was submitted. Based on this new information (e.g., 
token price movements), the user might attempt to argue that 
the non-deterministic DNN returned favorable results (bought 
tokens shoes price turned out to rise). To avoid this, ANH needs 
effective and efficient mechanisms to establish verifiable 
transaction results in the presence of non-deterministic 
functions. 
 
The rest of this section is intentionally left empty. The contents 
will appear in the next version of this preprint. 
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