
Training Massive Deep Neural Networks in a Smart
Contract: A New Hope

Yin Yang

yin@yang.net

https://scholar.google.com/citations?user=lPeuQboAAAAJ

Abstract— Deep neural networks (DNNs) could be very useful in
blockchain applications such as DeFi and NFT trading. However,
training / running large-scale DNNs as part of a smart contract is
infeasible on today’s blockchain platforms, due to two
fundamental design issues of these platforms. First, blockchains
nowadays typically require that each node maintain the complete
world state at any time, meaning that the node must execute all
transactions in every block. This is prohibitively expensive for
computationally intensive smart contracts involving DNNs.
Second, existing blockchain platforms expect smart contract
transactions to have deterministic, reproducible results and
effects. In contrast, DNNs are usually trained / run lock-free on
massively parallel computing devices such as GPUs, TPUs and / or
computing clusters, which often do not yield deterministic results.

This paper proposes novel platform designs, collectively called
A New Hope (ANH), that address the above issues. The main ideas
are (i) computing-intensive smart contract transactions are only
executed by nodes who need their results, or by specialized
serviced providers, and (ii) a non-deterministic smart contract
transaction leads to uncertain results, which can still be validated,
though at a relatively high cost; specifically for DNNs, the
validation cost can often be reduced by verifying properties of the
results instead of their exact values. In addition, we discuss various
implications of ANH, including its effects on token fungibility,
sharding, private transactions, and the fundamental meaning of a
smart contract.

I. INTRODUCTION

Smart contracts, which are collections of executable computer
code on a blockchain, have been criticized as “neither smart nor
contracts” [9]. This paper aims to make smart contracts smarter
by incorporating large-scale deep neural networks (DNNs) into
the code, which has numerous potential applications. For
instance, in decentralized finance (DeFi), a DNN might help
detect abnormal token price movements, which could be part of
a flash-loan attack [4]. A decentralized autonomous
organization (DAO) [5] might trade tokens automatically with
a DNN trained continually through reinforcement learning,
e.g., AlphaPorfolio [6]. A content creator might apply a
generative adversarial network (GAN) [10] to generate visual
art images, and subsequently tokenize them as non-fungible
tokens (NFTs) tradable in a decentralized exchange. In
particular, this paper aims to incorporate into smart contracts
not only DNN inference, but training as well, since DNNs often
need to be re-trained or fine-tuned with new data in many

1 https://ethereumprice.org/gas/
2 https://nomics.com/markets/gwei-gwei/usd-united-states-
dollar

applications, e.g., in reinforcement learning [18] and time series
forecasting [19].

However, with today’s blockchain platforms, training or
running DNNs within a smart contract still appears to be a
distant goal, for two main reasons. The first is cost. In Ethereum
[8], for example, each smart contract instruction incurs a
monetary cost called gas, which is about 5 GWei as of June
20211 (around 10-5 US dollars2). On the other hand, a large
DNN is usually computationally intensive, leading to a
prohibitively high gas cost. Specifically, Nvidia RTX 3090, a
popular GPU for deep learning, can execute over 35 trillion
floating-point operations (TFLOPs) per second 3 ; even so,
training a larger DNN on such a GPU can take hours or days.
In terms of gas cost, such a process would easily burn millions
of dollars.

Can we make smart contracts cheaper by artificially
lowering gas prices? For example, Binance Smart Chain
(BSC)4 gained popularity rapidly in 2021, in part thanks to its
significantly lower (often by a factor of 10x) gas cost compared
to Ethereum. However, there is a fundamental limit on how
cheap gas can be: that on current blockchain platforms, each
node is required to execute all transactions in all blocks, and
maintain the entire world state at all times, which includes
account balances and smart contract storage of all accounts in
the entire blockchain. Consequently, a node can only finish
processing a block (say, block b), after the node completes
executing all transactions in b. If the gas price is too low, and
the block b contains a transaction with intensive computations
(e.g., training a large DNN) that takes much time (e.g., days) to
execute, then the processing time of block b is necessarily long,
leading to prohibitively high latency for processing and
validating block b. Partly due to this reason, platforms such as
Ethereum explicitly limit the total amount of gas consumed
(independent of gas price) within one block.

The second major hurdle for training / running a DNN within
a smart contract transaction is that most blockchain platforms
implicitly assume that the results of a transaction (including
return values, token transfers, and modifications of storage state)
are deterministic and reproducible. For example, in Ethereum,
the hash value of block b covers the root hash of the global state
tries [22], which is computed based on the account balances and
smart contract storage states after executing all transactions in

3 https://www.nvidia.com/en-eu/geforce/graphics-cards/30-
series/rtx-3090/
4 https://www.binance.org/en#smartChain

block b. When verifying a block, a validator (i) re-executes all
transactions in b, (ii) re-computes the block hash based on the
updated world state, and then (iii) checks whether this hash
matches the one included in b. On the other hand, many
algorithms involved in DNN training do not output
deterministic results. For instance, the documentation of
PyTorch, a popular Deep Learning library, lists
nondeterministic functions5. As of June 2021, this list includes
commonly used functions such as tensor interpolation (e.g., for
resizing an image), max / average pooling (commonly used in
convolutional neural networks), and CTC loss [11] (for
learning sequence alignment). Further, note that a
“deterministic” function in PyTorch only guarantees
reproducibility when the same code is run on the same
hardware; in other words, different types of GPUs can still lead
to different results. Lastly, some parallel DNN training
algorithms such as Hogwild! [15] are specifically designed to
sacrifice result determinism to gain high efficiency.

Is it possible to validate computer programs with long
running time and non-deterministic results without centralized
trusted authorities? This paper draws inspiration from common
practices in the machine learning field, which has been
advancing rapidly with a high degree of transparency. In
particular, it is common for machine learning researchers to
release source code, training data, and pre-trained models in a
public repository, e.g., Github (github.com), along with a
published paper. Other researchers interested in the same
subject then download the code and data, run the code on the
dataset to train a new model, and verify that the test accuracy
of the new model is consistent with that obtained by the pre-
trained model and the claims of the paper. Unlike validators in
the blockchain world, no machine learning researcher would
attempt to run all versions of all code ever released in all
repositories, for the pointless purpose of “maintaining the
world state”. Instead, code is run on a need-to-run basis.

Meanwhile, the fact that the results of many DNN training
algorithms are not exactly reproducible is often just a minor
inconvenience. In particular, when a researcher validates the
release source code, dataset, and pre-trained model of a paper,
the validation process focuses on obtaining comparable
performance (e.g., inference accuracy on a test dataset) as the
released results of the code (i.e., the pre-trained model), rather
than reproducing an exact, bit-to-bit copy of the results. In other
words, the validation process runs another program to verify
the properties of execution results to establish correctness,
which bypasses the irreproducible result problem.

As an extreme case, there exist massive DNNs with billions
or even trillions of parameters, whose training is essentially
limited to a few so-called “big-compute” organizations with
vast amounts of computing power. For instance, the training of
GPT-3 [3] was performed in a large data center, and cost
millions of dollars. Further, the training data could be
proprietary in some cases, e.g., Google’s internal image
collection JFT-300M [17]. Even for such cases, the machine

5https://pytorch.org/docs/stable/generated/torch.use_deterministic_al
gorithms.html#torch.use_deterministic_algorithms.

learning community still managed to validate the released pre-
trained models (e.g., a Transformer-based language model [7])
by verifying their effectiveness when fine-tuned on another task
(e.g., natural language inference [21]) with a dataset not
involved in the original training process of the DNN. In essence,
here the validation of a program’s outputs verifies the utility of
these outputs in the target applications. In this sense, the
original program that obtained these results could be treated as
a black box. For instance, in the case of GPT-3 [3], the authors
did not release their pre-trained DNN model; instead, they
allowed external researchers to interact with the model through
a web interface, as a limited form of validation.

Based on the above observations, this paper proposes a set
of fundamentally new blockchain platform designs,
collectively called A New Hope (ANH), to enable the
integration of large-scale DNNs into smart contracts.
Specifically, ANH has the following characteristics:
 Validators of new blocks do not execute the transactions

therein.
 Transaction execution is on-demand, possibly through a

service provider called an on-chain accountant.
 Smart contract transactions are allowed to have non-

deterministic results, which are verified through a special
validation mechanism that may involve invoking other
smart contracts.

In the following, Section II focuses on handling compute-
intensive smart contracts that still yield deterministic results.
Section III (which will appear in the next version of this pre-
print) deals with smart contracts with non-deterministic results.

II. HANDLING COMPUTING-INTENSIVE SMART CONTRACTS

This section focuses on enabling computing-intensive
operations such as DNN training in smart contracts. In this
section, all transactions are assumed to be deterministic;
transactions with non-deterministic results are handled later in
Section III.

A. Validating Blocks without Executing Transactions

In existing blockchain systems, a block consists of a sequence
of transactions and additional verification information such as
signatures and hash values. For example, a block (say, bi) in
Ethereum [22] contains the following contents:
 Block number (i.e., i) and the hash value in the previous

block (i.e., bi-1).
 An ordered list of transactions, denoted as bi.txs.
 Values required by the consensus protocol, which is

orthogonal to this paper.
 Root hash of the world state (denoted as bi.ws) after

executing all transactions in bi.txs. Specifically, bi.ws
covers the balance and nonce (i.e., the number of
transactions initiated) of every account, as well as the
code and storage states of each smart contract, on the
entire blockchain.

Among the above items, only the last one, i.e., bi.ws, poses a
fundamental limit on the maximum computational cost of a
smart contract transaction. Specifically, to generate bi.ws, the
node that creates (or verifies) block bi must (i) maintain the
world state prior to bi and (ii) run all transactions in bi.txs. Due
to (ii), creating a new block bi takes at least as much time as
running all transactions in bi.txs, which can be long when a
transaction in bi.txs contains expensive operations, e.g., training
a DNN. Meanwhile, the creation of different blocks cannot be
pipelined to hide the cost, since the creation of the next block
bi+1 can only be done once bi is confirmed, due to the above
requirement (i).

To address the above problem, the proposed approach ANH
takes a bold move of removing bi.ws altogether, for any i>0,
meaning that with a single exception of the genesis block b0, no
block contains information about the world state. Further, a
block can be formed as soon as its creator node gathers a list of
transactions bi.txs; a validator of bi simply verifies the signature
of each transaction in bi.txs, and completes the consensus
process (orthogonal to this paper). In other words, neither the
block creator nor the validators are required to run any
transaction in bi.txs.

Double-spending attacks. An immediate question about the
above approach is: is the blockchain still robust against double-
spending attacks? To answer this, let’s examine a simple
double-spending scenario: a user Alice with account x and
balance x initiates two properly signed transfers: one to Bob
and another to Carol, both with all the money in Alice’s account,
i.e., x. Without maintaining the world state, block creators and
validators may not know Alice’s account balance x

6 ;
consequently, both transfers are added to the blockchain. Does
this mean Alice has successfully performed a double-spending
attack?

The answer, fortunately, is no. The reason is that although
the blockchain contains both transactions AliceBob and
AliceCarol, due to the consensus protocol of the blockchain,
there is a unique order of these two transactions. Hence, when
someone (clarified later in Section II-B) eventually executes
these two transactions, the later one of them inevitably fails due
to insufficient balance7, preventing the double-spending.

In general, given an initial world state, a sequence of
deterministic transactions with a fixed order uniquely
determines the world state after executing these transactions,
which can be trivially proved by induction. In fact, this is
commonly performed in log-based incremental data warehouse
replication and Change Data Capture (CDC), where a log file
records a sequence of transactions [16]. Since the blockchain’s
consensus protocol establishes a unique transaction order, there
is no ambiguity of the final world state bi.ws after a block bi,
even though the block creator / validators have not explicitly
computed bi.ws.

6 Strictly speaking, the proposed approach ANH does require block
creators and validators to verify that Alice has sufficient balance to
pay the transaction fee. This is elaborated in Section II-D.

Observing transaction results. One way to understand the
above approach is that the world state bi.ws in fact always exists
for every block bi, just that no one has yet observed bi.ws by
executing transactions in bi.txs. Given sufficient time, any node
can eventually observe bi.ws by executing all transactions that
bi.ws depends upon. In other words, each transaction tx
committed to the blockchain (i.e., passing consensus) is
considered already happened and has permanently and
irreversibly altered the world state; its specific effects on the
world states are only observed later on, when tx is executed
(detailed in Section II-B).

For instance, consider a DeFi lender smart contract with an
automatic loan approval function that employs a DNN to decide
on whether or not to approve the transaction sender’s loan
application. Now, imagine that thousands (depends on the
block capacity) of loan applications are committed to the
blockchain in a single block b. As soon as b passes consensus
(which is fast since none of the transactions are executed), the
decision for each of the loan applications has already been
made by the DNN, though at this point, no user knows these
decisions. After that, each loan applicant can observe her result,
by sequentially executing transactions in b till reaching her own.
Note that the observation process can take far longer than the
creation of block b, due to the computationally intensive DNN.

Challenges. The above platform design in ANH, i.e., blocks
of transactions are added to the blockchain before their
execution, leads to two major challenges. The first is how to
perform an on-chain to off-chain (O2O) transaction. For
instance, consider that Alice transfers tokens to Bob in a
transaction (denoted as txab), in exchange for real-world (i.e.,
off-chain) goods or services. Assume that the txab is
successfully added to the blockchain, say, in block bi. Then,
how does Bob know that he has indeed received the tokens, i.e.,
txab is not rolled back? Intuitively, Bob needs to observe his
account balance after txab, which can be computational
intensive even though txab is a simple token transfer, because
determining whether Alice’s account has sufficient balance for
txab can be non-trivial, especially when Alice’s tokens come
from complex smart contract (e.g., DeFi) transactions.

Another challenge is that an adversary can launch a denial-
of-service (DoS) attack on the blockchain platform, by flooding
the network with invalid transactions. An example of such
attack is shown in the following algorithm.

Algorithm 1: Tx-DoS
1. Repeat (infinite loop):
2. Generate a pair of keys (kpub, kpriv) for a new account.
3. Use the private key kpriv to sign a new transaction tx

that transfers tokens to an arbitrary recipient.
4. Submit the signed tx to the blockchain platform.

In the above algorithm, the transaction tx attempts to transfer
tokens from a new account with zero balance, which is an

7 When the execution of a transaction encounters an invalid operation,
e.g., a transfer without sufficient balance, the whole transaction is
rolled back, reversing all its modifications of the world state. This is a
common practice in major blockchain platforms such as Ethereum.

invalid operation and has no effect on the world state. However,
without explicitly maintaining the world states, the validators
do not have account balance information, and, thus, must accept
these transactions and put them in new blocks. Consequently,
algorithm Tx-DoS leads to a flood of invalid transactions, which
increases network transmissions and slows down the entire
blockchain.

In the following subsections, we address these challenges
with novel platform designs in ANH.

B. Transaction Indexing and Selective Execution

As described in the previous subsection, in ANH, transactions
are added to the blockchain pre-execution. When transactions
contain expensive operations such as DNNs, maintaining the
entire world state in real-time can become prohibitively
expensive. Hence, ANH adopts a lazy transaction execution
strategy: that a transaction is executed only when its results are
needed. In particular, a user can investigate the value a given
state s at a given time (e.g., sbi.ws for a given block bi), by
selectively executing transactions relevant to s. To facilitate
fast retrievals of such transactions, the transactions can be
indexed by an inverted file [1] that facilitates efficient state-to-
transactions lookup, akin to how search engines index web
pages on the Internet for fast keyword-based retrieval.

In our previous example that Alice commits a transaction
txab to the blockchain transferring tokens to Bob, Bob would
naturally want to check his own account balance after txab.
Ideally, all transactions on the blockchain are indexed by
senders and receivers, so that Bob can quickly retrieve
transactions relevant to his account, and executes only these to
find his account balance. Suppose that Bob never submits
computationally expensive smart contract transactions, then,
ideally it should be relatively cheap for him to check his balance.
Unfortunately, this is not true in the presence of adversaries: as
we explain below, a simple query such as Bob checking his own
account balance can be surprisingly expensive to answer.

Execution DoS attacks. Consider the following function,
as part of a smart contract:

Algorithm 2: Exec-DoS
1. Perform some computationally expensive operations.
2. Randomly choose an account x with a random seed

obtained from the result of Line 1.
3. Transfer a small amount of tokens (e.g., 1 Wei) from the

parent smart contract account to account x.

A transaction calling the above smart contract function Exec-
DoS can, in theory, modify the account balance of any user (and
any smart contract) on the blockchain. In other words, the result
of every account balance query depends on the execution of
Exec-DoS, which involves computationally expensive
operations (Line 1). Essentially, such transactions are a form of
denial-of-service (DoS) attack of the entire blockchain platform,
that significantly increases the cost of account balance queries.

To defend against Exec-DoS, a possible countermeasure is
to impose financial penalties on accounts for initiating
transactions invoking such a contract. For example, the
blockchain platform could require that each transaction tx

explicitly declare the accounts and / or smart contract storage
states that can be possibly affected by tx [23], and charges a fee
(elaborated in Section II-D) for each of them. Meanwhile,
modifying an undeclared account is treated as an invalid
operation, and any transaction with such an operation is rolled
back. While such measures alleviate the problem of generic
execution DoS attacks, it does not prevent a targeted attack on
a specific account. Continuing our example, the adversary
could initiate a transaction calling a contract similar to the
following one, to increase the cost of account balance queries
of a target victim, e.g., Bob.

Algorithm 3: Targeted-Exec-DoS(x)
// Input: x: an account in the blockchain.
1. Perform computationally expensive operations.
2. Randomly choose a small quantity q.
3. Transfer q tokens to account x.

Targeted-Exec-DoS works against any given account x, making
an account balance query computationally expensive for x
without the cooperation of x. Defending against Targeted-Exec-
DoS is not easy. Instead, the proposed ANH platform takes a
different approach: that the user is recommended to only
perform minimal accounting queries that retrieve only the
needed information (which does not depend upon Targeted-
Exec-DoS) from the blockchain, explained below.

Minimal accounting queries. In our running example,
observe that Bob, in fact, needs neither his exact account
balance after txab, nor Alice’s exact account balance right
before txab. Instead, all Bob needs to know, is a single bit of
information: whether or not Alice’s account balance exceeds
the amount transferred in transaction txab, right before txab,
which is referred to as a minimal accounting query (MAQ)
Intuitively, if Alice’s account balance turns out to be
insufficient for txab, then, txab is rolled back, failing the token
transfer; in this case, Bob should refuse to deliver the purchased
goods or services. Conversely, if Alice’s account has sufficient
balance, then the transfer in txab irreversibly succeeds, meaning
that Bob is obliged to deliver the purchased goods or services.

In general, the MAQ depends on (i) the blockchain
application setting, and (ii) how the blockchain interfaces with
the physical world. For instance, it is possible that Alice’s
transaction leads the modification of a smart contract storage
state (e.g., “vehicle insurance claim approved”) that triggers
Bob to perform an activity (e.g., repairing a damaged car). The
choice of the MAQ in such cases is an important part of the
blockchain application design to make the application viable,
which is decided by the app developer. In the following, we
focus on the case of simple token transfer such as txab in our
running example.

Income and expenses. It remains to clarify how Bob can
efficiently perform an MAQ to check whether Alice has enough
funds for the transfer transaction txab. For this purpose, we first
define two concepts: expense and income of a given account.
Note that in this subsection, we assume that both Alice and Bob
are user accounts. The cases for smart contract accounts are
discussed later in Section II-E.

Definition 1 (Expense). Any transaction tx sent from account x
that carries v tokens represents an expense of amount v w.r.t.
account x.

Definition 2 (Income). Given a transaction tx and an account x,
let x and 'x be the account balance of x before and after tx,
respectively. Then, there are two cases in which tx represents
an income of account x.
 Case 1: tx is sent from another account y≠x, and x≠'x. In

this case, tx represents an income of amount 'x‒x w.r.t.
account x.

 Case 2: tx is sent from x carrying v tokens, and x‒v≠'x.
In this case, tx represents an income of amount 'x‒(x‒v)
w.r.t. account x.

With the above definitions, the balance of a user account x is
clearly equal to its total income subtracted by its total expenses.
Note that unlike the concept of debit and credit in traditional
accounting, in our context, a transaction tx can represent both
an expense and an income w.r.t. an account x. For instance, x
might send out tokens (which represents an expense of x) to a
smart contract account y as part of a function call, which
subsequently triggers an operation (which can be from y, or
another smart contract) that sends tokens back to x (which
represents an income of x). A special case concerns the
payment of transaction fees, which is explained further in
Section II-D.

The above definitions of expense and income ensure an
important property: that it is easy to compute the total expenses
of a user account. Specifically, all transactions on the
blockchain can be stored in a database, indexed by the sender
account, with a value column representing the amount of tokens
carried in each transaction. Then, the total expense of a given
account x can be computed in a single SELECT query:

SELECT SUM(value) FROM blockchain WHERE sender=x

Clearly, the above query can be augmented to express a more
fine-grained query, e.g., the total expense of account x right
before a given transaction tx. Details are omitted for brevity.
The total expense of a smart contract account, on the other hand,
can be complex, and we defer the discussion to Section II-E.

The exact total income of an account, however, can be
expensive to compute, for two reasons. First, the income may
come from a computationally intensive smart contract function
call (e.g., a DNN, fine-tuned on new data, decides to send
tokens to account x), or a sequence of such function calls. In
fact, the two above-mentioned attacks Exec-DoS (Algorithm 2)
and Targeted-Exec-DoS (Algorithm 3) are examples of such
computationally expensive incomes. Second, the income
transaction itself tx might involve invalid operations and get
rolled back, e.g., tx may be sent from an account y with
insufficient balance. In general, an income transaction may
have far reaching dependencies and require the execution of a
large number of transactions, possibly with a tremendous
amount of computation. Hence, obtaining the exact total
income of an account can be rather difficult.

Account balance lower bounding. To address the above
problem, ANH recommends computing a lower bound of an

account’s total income with selected income transactions.
Intuitively, the DoS attacks in Algorithm 2 and 3 can only affect
an account x by increasing its balance; thus, when computing a
lower bound of x’s balance instead of its exact value, one can
simply ignore such attacks.

Formally, we have the following lemma.

Lemma 1 (account balance lower bound). Given an account x
and a set of its income transactions , let P be the total income
of x from all transactions in . Let Q be the total expenses of x,
and X0 be the initial token balance of x specified in the genesis
block b0. Then, X0+P‒Q is a lower bound of the account
balance of x.

The proof of Lemma 1 is omitted for brevity, which follows
directly from the definitions of income (Definition 1) and
expenses (Definition 2).

Continuing our running example, Alice selects a set  of her
income transactions, and presents  to Bob. The latter then
executes transactions in obtaining Alice’s total income P
represented by transactions in If this total income, combined
with Alice’s initial balance at genesis (if any), and subtracted
by Alice’s total expenses (which can be retrieved efficiently as
explained before), exceeds the value of txab, then Bob can rest
assured that the token transfer in txab has been successfully
fulfilled. This process is summarized in the algorithm Pay
below, where x is Alice and y is Bob in our running example.

Algorithm 4: Pay (x, y, amt)
// Inputs: x, y: sender and recipient accounts.
// amt: amount to tokens that x sends to y.
1. x submits a transaction tx transferring amt tokens to y.
2. x present to y a list of income transactions 
3. y queries the blockchain to obtain x’s total expenses Q

prior to tx, and its initial balance X0 in the genesis block.
4. y computes the results of transactions in to determine

whether X0+P‒Q≥amt
5. If P‒Q≥amt, then:
6. y accepts tx, and performs the required real-world

 actions in exchange to the token transfer tx.
7. Else: y rejects tx, and refuses to perform the corresponding

 real-world actions in exchange to tx.

Note that in Line 4 of the above algorithm, the recipient y aims
to determine whether X0+P‒Q≥amt (Lemma 1), which does
not necessarily involve obtaining the exact value of P. The fact
that P can be lower-bounded is an opportunity for further
optimization.

The Pay process is clearly robust to the attacks Exec-DoS
(Algorithm 2) and Targeted-Exec-DoS (Algorithm 3), as long
as these transactions are not added to the set , which is chosen
by the sender x (e.g., Alice). Further, note that the use of a
selected set ensures that transactions are executed on a need-
to-execute basis, which is a major goal of ANH.

It remains to clarify (i) how the sender (Alice) selects the
income transaction set and (ii) how the recipient (Bob)
verifies that P‒Q≥amtwith the minimum computations. We
call these operations computational accounting, which can be

done through professional services called on-chain accountants.
In the next subsection, we detail the computational accounting
process, and how on-chain accounts help in this process.

C. Computational Accounting and On-Chain Accountants

Choosing  by income cost. First, we clarify the selection of
the income transaction set , which is based on the concept of
income cost, defined below.

Definition 3 (Income Cost). Given a transaction tx that
represents an income w.r.t. account x, the income cost Ctx for tx
is the amount of computations (measured by gas consumption)
required to determine the specific amount of income v w.r.t.
account x, as a result of tx. Transaction tx is a zero-cost income
w.r.t. x, iff. Ctx=0.

Note that in the above definition, the amount of income v can
be zero, e.g., when tx is rolled back. The income v, by definition,
cannot be negative, since all outgoing token transfers are
considered as expenses, including transaction fee payment,
elaborated in Section II-D. The concept that each income has a
cost resembles the real-world situation that incomes are taxed,
which is discussed in Section II-E.

Once a user (e.g., Alice) knows the income cost of each of
her income transactions, the selection of set  reduces to a
standard knapsack problem, i.e., choosing the set of incomes
with the minimum total cost that satisfies the inequality X0+P‒
Q≥amt in Lemma 1. Although the knapsack problem is NP-
hard, it is known to have a fully polynomial-time
approximation scheme [20], meaning that its optimal solution
can be effectively and efficiently approximated.

Calculating income costs. Next, we focus on the calculation
of income costs, which can itself become rather complicated
and expensive. Figure 1 illustrates three examples of income
cost. In the first example (Figure 1a), Alice had received 100
tokens from another account Carol in a transfer transaction txca;
Carol has an initial balance of 1 million, specified in the genesis
block b0, which is more than sufficient to cover all her expenses
including txca. Then, txca is a zero-cost income w.r.t. Alice,
since the verifier (say, Bob) does not need to execute any smart
contract code to confirm the value of txca (i.e., 100, which is
explicitly stated in txca) or that the sender (Carol) has sufficient
funds to pay Alice through txca.

In the second example (Figure 1b), instead of a direct token
transfer, Alice’s rich friend Carol creates a smart contract
account y, transfers 1,000 tokens to y, and then submits a smart
contract transaction txya that triggers the transfer of tokens from
y to Alice. Then, txya represents an income to Alice of value 100,
and its income cost equals the gas consumption of txya.

In the last example (Figure 1c), there is another user Dave,
who made a simple transfer of 100 tokens to Alice via
transaction txda. Dave’s income comes from a previous smart
contract transaction txyd which sent tokens from a smart
contract y set up and funded by Carol, similar to the second
example. Then, the income cost of txda is the gas consumption
of txyd, because (i) txda is a simple token transfer that consumes
no gas, and (ii) to confirm the validity of txda, the verifier Bob

needs to confirm the income of Dave, which involves the
execution of txyd.

(a) Example 1: income transaction txca

(b) Example 2: income transaction txya

(c) Example 3: income transaction txda
Figure 1: Examples of income cost.

In general, the income cost of a transaction tx is determined by
the cost of computing the provenance of the world states that tx
depends upon, including account balances (which might be
lower-bounded to reduce computations) and smart contract
storage states (which usually need to be computed exactly).
When tx has complex dependencies, calculating its income cost
can be computationally intensive.

Fortunately, a user often already knows the cost for at least
some of her income transactions. Observe that in the Pay
process (Algorithm 4), from the recipient y’s point of view, the
transaction tx sent by x represents an income, and its cost is
computed at Line 4, in which y executes the transaction set .
For instance, in the third example above where Alice receives
tokens from Dave via transaction txda, if txda went through the
Pay process, then Alice had already known the cost of txda (i.e.,
the gas cost of txcy) since she had executed txyd during the
verification of txda.

In case the user does not already know the cost of an income
transaction, she needs to explicitly compute this cost. Further,
Line 4 of the Pay process also incurs much computation. While
these operations could be done by the user herself, e.g., using
rental virtual machines from a cloud platform, it is often more
continent for the user to outsource such tasks to a professional
accountant through the same blockchain, detailed next.

On-chain accountants. ANH envisions that third-party
professional accountants help users perform computational

accounting tasks, including determining the income costs and
(selectively) executing a given set  of transactions during the
Pay process described in Algorithm 4. Such a service can
achieve economy of scale by serving multiple users, especially
when their transactions share common dependencies in the
world state, whose results can be cached to improve efficiency.
Further, the accountant may possess the expertise and / or
specialized algorithms for reducing the cost of performing
computational accounting tasks, which are not commonly
available to ordinary users.

Such an accountant can be a trusted party, akin to real-world
accounting firms and notary public services, who are legally
bound to produce correct results. Note that if the accountant
provides incorrect results to the client, he/she risks being caught
lying, which happens when an honest party executes the same
transactions and verifies the accountant’s answers with the true
results. The accounting service can also be performed via the
same blockchain, referred an on-chain accountant. There are
various ways to implement such an accountant through smart
contracts. One way is to require that the accountant deposit a
considerable amount of tokens to a smart contract that contains
an Oath-of-Correctness function, as shown below.

Algorithm 5: Oath-of-Correctness(Q, r, p)
// Input: Q: a query about a given world state at a given time.
// r: a value that is claimed to be the result of Q.
// p: penalty amount for a falsified result r.
1. If r ≠ the result of query Q, then:
2. Transfer p tokens to a blackhole account. // slash

Basically, the Oath-of-Correctness function in the smart
contract takes as input (i) a user’s query Q, whose result can be
uniquely determined by past transactions on the blockchain,
and (ii) the accountant claimed result r of Q. Once the account
finishes the computations requested by the client, it calls Oath-
of-Correctness with the results. The client can then directly
read r from the Oath-of-Correctness transaction description,
without executing any transaction on the blockchain. If the
accountant falsifies r, then he/she gets slashed (Line 2) and
loses a certain amount of tokens (specified by p) from the
deposit as a penalty, which goes to a blackhole account that no
one knows the private key, e.g., 0x0. Alternatively, the penalty
tokens can be paid to the client as compensation.

Such an oath discourages an honest accountant from
returning incorrect results. Note that it is computationally
intensive to know whether the oath contract has enough deposit
for the slash operation to take effect (Line 2). To establish that,
the oath smart contract account can be periodically audited by
another accountant. The frequency of such auditing depends on
the trustworthiness of the accountant (e.g., by the amount of
deposit and her history of serving other clients), which might
be automated via machine learning.

It is worth mentioning that instead of setting up an oath
smart contract at the accountant (e.g., Algorithm 5), it is also
possible to set up a bounty smart contract at the client, which
pays the accountant only if the answer is correct. When the
accountant is a professional service and the client is an ordinary
user, it might appear more natural to set up the smart contract

at the accountant’s side. The idea of a client-side bounty smart
contract is revisited later in Section III.

D. Collecting Transaction Fees

So far, our discussion has not addressed an important issue: the
collection of transaction fees by validators. Unlike traditional
blockchains (e.g., Bitcoin [14]) in which the transaction fee can
(theoretically) be zero and the miners are paid by the platform,
in ANH, each transaction must incur a fee, in order to prevent
the Tx-DoS attack described in Algorithm 1. Further, to
effectively defend against Tx-DoS, the transaction fee payment
for any transaction tx must be immediately and explicitly
confirmed by the block validators during the consensus
protocol; in particular, if the sender’s account does not have
sufficient balance to pay the fee for tx, then tx should be ignored
and not added to a new block. However, paying transaction fees
with the Pay process (Algorithm 4) is clearly infeasible, since
the consensus protocol needs to be performed with stringent
time constraints.

To address this problem, ANH imposes the following rules:
1. Transaction fees must be paid with zero-cost income

(Definition 3).
2. The transaction sender must pay the maximum possible

gas costs specified by the gas limit of the transaction. If
the transaction completes without reaching the gas limit,
the remaining paid gas is returned to the sender as an
income of the sender’s account.

When an account does not sufficient zero-cost income to cover
the transaction fee, its transactions are immediately rejected by
the block validators during the consensus protocol. The
following lemma clarified the source of zero-cost incomes,
whose proof follows from Definition 3, and is omitted for
brevity.

Lemma 2 (Source of Zero-Cost Income). Each zero-cost income
w.r.t to an account x can be traced back to a source of tokens
directly provided by the blockchain platform, e.g., the genesis
block, through a sequence of direct user-to-user token transfers
ending at x.

When a user runs low on zero-cost income, it may use the
service of a professional money changer service, discussed in
Section II-E.

Fee structure. Next we clarify the necessary components
of the transaction fee. As explained above, there must be a
minimum fee for each transaction, to deter the Tx-DoS attack
(Algorithm 1). Further, to prevent infinite loops, there needs to
be a minimum gas charge, which can be set far lower than
traditional blockchain platforms, since transactions on ANH
are executed on a need-to-run basis, and might never be
executed, e.g., Exec-DoS and Targeted-Exec-DoS presented in
Section II-B.

In existing platforms, the gas costs are designed without
consideration for DNN training, which is typically performed
on GPUs or TPUs. For instance, the multiplication of two large
matrices can be done efficiently using hardware-accelerated

API calls (e.g., Nvidia CUDA8); therefore, the gas cost of a
matrix multiplication operation should be far lower than the
sum of the gas cost for the underlying elementary operations
such as multiplications and additions. Note that the gas cost of
different operations also affects DNN architecture design. For
instance, on GPUs, a 3x3 convolution costs significantly less
than 9 1x1 convolutions, which has been exploited in ConvNet
designs such as ShuffleNet [13]. Hence, the gas cost should
agree with the hardware benchmark results to provide the
correct incentives for efficient DNN architecture design.

Finally, existing platforms also incur rather large gas costs
for memory consumption, since each node is required to
maintain the entire world state. In ANH, memory gas cost can
be significantly reduced for similar reasons as computational
gas cost. Meanwhile, large objects, such as weights of a trained
DNN, should be placed in secondary decentralized storage, e.g.,
via IPFS [2], rather than in memory.

E. Discussions

Token fungibility and economics. Roughly speaking,
fungibility means every token should hold the same value,
regardless of its history. ANH trades token fungibility with
computational efficiency on the blockchain platform, by
deferring smart contract computations to payment time
(Algorithm 4), which leads to the concept of computation cost
of income (Definition 3). This concept may appear esoteric at
first glance; a closer look reveals that income cost in fact
applies to the physical (i.e., off-chain) world too. In particular,
any sizable amount of money, regardless of the underlying
currency type or technology, is hardly fungible, due to various
legal constraints. For instance, different income items can be
taxed at different rates, depending on the type (e.g., salary,
capital gain, inheritance, divorce payments), source (e.g.,
domestic, foreign), etc. In this sense, a common task that
accountants in the physical world perform is to compute
solutions to the optimization problem that minimizes the cost
(e.g., tax obligations) of money.

In ANH, the accounting cost of money increases
monotonously over time, which may cause problems both on
the microeconomic and macroeconomic levels. On the
microeconomic level, an income item whose accounting cost
exceeds its value is essentially worthless to the user. Note that
the accounting cost varies depending on the user: to an ordinary
individual, the cost can be rather high since the user needs to
purchase retail services from an accountant; to a large financial
institution with its own data centers and accounting team, the
cost can be significantly lower. Hence, one way to mitigate the
problem is through dedicated money changer services, which
exchange high-cost to low-cost (or even zero-cost) money at a
fee. The design of such a service is outside the scope of this
paper, and is left as future work.

On the macroeconomic level, the total accounting cost of all
tokens (which is initially zero in the genesis block) increases
with every smart contract function call, and can never decrease.
Meanwhile, the blockchain platform requires low-cost money

8 https://developer.nvidia.com/cuda-zone

to function, e.g., transaction fee payment must be done with
zero-cost income, as explained in Section II-D. This problem
needs to be addressed on the blockchain platform level through
governance rules. For instance, a blockchain may introduce
sources of zero-cost money after the genesis block (e.g.,
payments to block validators, airdrops, etc.), which resembles
a central bank injecting liquidity to the economy.

Another way is to selectively adopt the traditional
blockchain approach in ANH, leading to a hybrid system. In
particular, a rich account may present a high-cost income item
to all validators in the blockchain, who confirm the income by
executing the relevant transactions locally, reaching consensus
over all relevant world states, and agreeing to replace the
expensive income item (e.g., by dumping it to a blackhole
account) with newly minted zero-cost tokens issued by the
platform. Such measures are left to the implementation of the
specific blockchain platform adopting the ANH designs.

ANH vs. sharding. ANH reduces total smart contract
computation costs through lazy, on-demand execution. In the
cryptocurrency community, the hope for fast transaction
execution has been mostly placed on sharding (e.g., [12])
which processes transactions in parallel. Note that there is a
limit to parallelization: for instance, even with sharding, a slow
operation (such as DNN training) that takes hours still cannot
be done within a single transaction, if the platform expects to
produce a block, say, every 10 minutes.

Further, the level of parallelism is also limited by the
dependencies between smart contract function calls and world
state variables. For example, in SeaLevel [23], each smart
contract transaction is required to declare all its dependent
variables, so that the execution engine can maximize
parallelism accordingly. For this reason, some of the challenges
faced by ANH also apply similarly to sharding. For instance, in
a targeted DoS attack of ANH (Algorithm 3), the adversary
intentionally introduces dependencies to a world state variable,
i.e., balance of the victim account x. In sharded executions, the
adversary (e.g., a competing DeFi service) may similarly aim
to slow down a smart contract function (e.g., a victim DeFi
service), by issuing transactions that depend upon the victim’s
variables and a large number of other variables, to reduce the
victim’s transaction parallelism.

Finally, observe that ANH can be viewed as an extreme
form of sharding, in the sense different transactions are usually
executed by different parties, as transactions are run on a need-
to-run basis. Unlike sharding, however, the number of runs for
each transaction can vary in ANH, which can be as low as zero.

Impact on smart contract design. ANH requires special
considerations in smart contract design. For instance, the
concept of minimal accounting query (MAQ) needs to be
defined based on the application’s requirements, as explained
in Section II-B. Further, unlike user accounts, both expenses
and income of a smart contract can be complex and
computationally intensive. For instance, a smart contract may
contain a function that sends out tokens when it receives an
income, or upon reaching certain conditions represented by the

contract’s storage variables. Such an expense can have complex
dependencies. To make the smart contract usable, the
application designers and developers should aim to reduce
transaction dependencies and minimize execution costs for
important functionalities. Such designs are application-
dependent, and are outside the scope of this paper.

Lastly, for smart contract applications that have time
constraints, e.g., a decentralized exchange (DEX), ANH
recommends limiting the total computational cost of specific
types of transactions (including the cost of all dependent
transactions), similar to the case that transaction fees must be
paid with zero-cost incomes. Details are left as future work.

III. NON-DETERMINISTIC SMART CONTRACTS

Allowing a smart contract function to return non-deterministic
results in ANH opens new possibilities for attacks. For instance,
consider a trading bot, which buys or sells tokens guided by a
DNN. Recall that in ANH, transactions are executed after they
are committed to the blockchain, at which time the user has
gained new information that was not available at the time the
transaction was submitted. Based on this new information (e.g.,
token price movements), the user might attempt to argue that
the non-deterministic DNN returned favorable results (bought
tokens shoes price turned out to rise). To avoid this, ANH needs
effective and efficient mechanisms to establish verifiable
transaction results in the presence of non-deterministic
functions.

The rest of this section is intentionally left empty. The contents
will appear in the next version of this preprint.

REFERENCES
[1] Baeza-Yates, R., Ribeiro-Neto, B. Modern Information Retrieval. 1999.
[2] Benet, J. IPFS – Content Addressed, Versioned, P2P File System. arXiv:

1407.3561, 2014.
[3] Brown, T., Man, B., Ryder, N., et al. Language Models are Few-Shot

Learners. arXiv: 2005.14165, 2020.
[4] Cao, Y., Zou, C., Cheng, X. Flashot: A Snapshot of Flash Loan Attack

on DeFi Ecosystem. arXiv:2102.00626, 2021.
[5] Chohan U. The Decentralized Autonomous Organization and

Governance Issues. Regulation of Financial Institutions Journal, Social
Science Research Network (SSRN), 2017.

[6] Cong, L., Tang, K., Wang, J., Zhang, Y. AlphaPortfolio: Direct
Construction Through Reinforcement Learning and Interpretable AI.
http://dx.doi.org/10.2139/ssrn.3554486.

[7] Devlin, J., Chang, M. -W., Lee, K., Toutanova, K. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. ACL,
2019.

[8] Ethereum Foundation. A Next-Generation Smart Contract and
Decentralized Application Platform [online].
https://ethereum.org/en/whitepaper, retrieved in June 2021.

[9] Gimmelmann, J. All Smart Contracts are Ambiguous. Journal of Law &
Innovation, 2(1): 1-22, 2019.

[10] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y. Generative Adversarial Networks.
Communications of the ACM, 63(11): 139-144, 2020.

[11] Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J. Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks. ICML, 2006.

[12] Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford,
B. OmniLedger: A Secure, Scale-Out, Decentralized Ledger via
Sharding. IEEE S&P, 2018.

[13] Ma, N., Zhang, X., Zheng, H. -T., Sun, J. ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design. ECCV, 2018.

[14] Nakamoto, S. Bitcoin: a Peer-to-Peer Electronic Cash System. [online]
available at https://bitcoin.org/bitcoin.pdf, 2009. Retrieved in June 2021.

[15] Niu, F., Recht, B., Ré, C., Wright, S. J. Hogwild!: A Lock-Free
Approach to Parallelizing Stochastic Gradient Descent. NeurIPS, 2011.

[16] Ramakrishnan, R., Gehrke, J. Database Management Systems, Third
Edition, 2007.

[17] Sun, C., Shrivastava, A., Singh, S., Gupta, A. Revisiting Unreasonable
Effectiveness of Data in Deep Learning Era. ICCV, 2017.

[18] Sutton, R., Barto, A. Reinforcement Learning: an Introduction, Second
Edition. 2018.

[19] Triebe, O., Laptev, N., Rajagopal, R. AR-Net: a Simple Auto-Regressive
Neural Network for Time-Series. arXiv:1911.12436, 2019.

[20] Vazirani, V. Approximation Algorithms. 2003.
[21] Williams, A, Nangia, N., Bowman, S. A Broad-Coverage Challenge

Corpus for Sentence Understanding through Inference. ACL, 2018.
[22] Wood, G. Ethereum: a Secure Decentralised Generalised Transaction

Ledger Istanbul, Version e592fe4.
https://ethereum.github.io/yellowpaper/paper.pdf, retrieved in June
2021.

[23] Yakovenko, A. Solana: a New Architecture for a High Performance
Blockchain v0.8.13 [online]. https://solana.com/solana-whitepaper.pdf.
Retrieved in June 2021.

